In a life threatening emergency dial Triple Zero (000)
Mental Health
Call Mental Health Triage on
1800 629 354
(free call except from mobiles or public phones) or
6205 1065
Poisons Hotline
For a poison emergency in Australia call
13 11 26
Drug and Alcohol Help Line
The Drug and Alcohol Help Line is available 24-hours, 7 days a week on
5124 9977
Health Protection Service
For after hours urgent public health matters including environmental health, radiation safety, food poisoning and communicable disease management phone:
02 5124 9700
healthdirect
ACT State Emergency Service
Emergency help
during flood or storms
The majority of respondents to the 2021 ACT General Health Survey aged 5-17 years described their weight as healthy (87.2%).
For the purpose of reporting the ACT General Health Survey data on HealthStats, if the 95% confidence intervals of the estimates do not overlap, they are considered to be significantly different.
Note: The indicator shows self-reported data collected through Computer Assisted Telephone Interviewing (CATI). Estimates were weighted to adjust for differences in the probability of selection among respondents and were benchmarked to the estimated residential population using the latest available Australian Bureau of Statistics population estimates.
Responses for children aged 5-15 years were provided by the parent/carer who knows the most about the child's health. Persons includes male, female, other and refused sex respondents and may not always add to the sum of male and female.
The 2018 estimate for overweight persons has a relative standard error of 25% to 50% and should be used with caution.
The following estimates have not been published due to small numbers or a relative standard error greater than 50%:
- 2018: underweight persons, very overweight persons
- 2020: overweight persons, very overweight persons
- 2021: very overweight persons.
Statistically significant differences are difficult to detect for smaller jurisdictions such as the Australian Capital Territory. Sometimes, even large apparent differences may not be statistically significant. This is particularly the case in breakdowns of small populations because the small sample size means that there is not enough power to identify even large differences as statistically significant.