SGS

ANALYTICAL REPORT

ME304337 R1

	S	mple Number ample Matrix Sample Date Sample Name	ME304337.021 Soil 22 Sep 2017 BH9-0.4-0.6	ME304337.022 Soil 22 Sep 2017 BH10-0.1-0.2	ME304337.023 Soil 22 Sep 2017 BH10-1.0-1.1	ME304337.024 Soil 22 Sep 2017 QA1
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 10/10/2017						
% Moisture*	%w/w	1		5.0	-	14.6
Perfluoronated Surfactants in Soil - TOPS Method: MA	_1523_TOPS Test	ted: 10/10/20	17			
10:2 Fluorotelomersulphonate*	mg/kg	0.02		<0.02		<0.02
4-2 Fluorotelomersulphonate*	mg/kg	0.02	(to)	<0.02	5	<0.02
6-2 Fluorotelomer Sulfonate*	mg/kg	0.02		<0.02	-	<0.02
8:2 Fluorotelomersulphonate*	mg/kg	0.02		<0.02		<0.02
N-Ethyl-heptadecafluorooctane sulphonamide*	mg/kg	0.02		<0.02	9	<0.02
N-Ethyl-heptadecafluorooctane sulphonamidoethanol*	mg/kg	0.02		<0.02	-	<0.02
Methyl-heptadecafluorooctane sulphonamide*	mg/kg	0.02		<0.02		<0.02
-Methyl-heptadecafluorooctane sulphonamidoethanol*	mg/kg	0.02		<0.02		<0.02
Perfluorononanoic acid*	mg/kg	0.02	-	<0.02		<0.02
Perfluorooctane sulfonate*	mg/kg	0.02	2	0.82	-	0.34
Perfluoroctanesulfonamidoacetic Acid*	mg/kg	0.02	-	<0.02	-	<0.02
Perfluorooctanoic Acid*	mg/kg	0.02	-	0.02	-	<0.02
Perfluorobutanoic acid*	mg/kg	0.02	-	<0.02		<0.02
Perfluorobutane sulfonate*	mg/kg	0.02	-	<0.02		<0.02
Perfluorodecanoic acid*	mg/kg	0.02	-	<0.02		<0.02
Perfluorodecane sulfonate*	mg/kg	0.02	-	<0.02		<0.02
Perfluoro-1-dodecanesulfonate*	mg/kg	0.02		<0.02		<0.02
Perfluorodecylphosphonic acid*	mg/kg	0.04		<0.04		<0.04
Perfluorododecanoic acid*	mg/kg	0.02	-	<0.02	-	<0.02
Perfluoro-1-heptanesulfonate*	mg/kg	0.02		0.02		<0.02
Perfluoro-1-nonanesulfonate*	mg/kg	0.02		<0.02		<0.02
Perfluoroheptanoic acid*	mg/kg	0.02	-	<0.02	-	<0.02
Perfluoronexanoic acid*	mg/kg	0.02		0.04	-	<0.02
Perfluoro-n-hexadecanoic acid*	mg/kg	0.02		<0.02	-	<0.02
Perfluoro-n-nexadecarioic acid Perfluorohexane sulfonate*	mg/kg	0.02	-	0.08		<0.02
Perfluoronexane suilonate* Perfluoronexylphosphonic acid*	mg/kg	0.02	-	0.08	-	<0.02
Perfluorooctadecanoic Acid*	mg/kg	0.02	-	<0.02	-	<0.02
Perfluorooctylphosphonic acid*	mg/kg	0.02		0.02		<0.02
erfluoroctane sulfonamide*	mg/kg	0.02		0.02	-	0.02
erfluoroctane suironamide*	mg/kg	0.02		<0.02		<0.02
Perfluorotetradecanoic acid*	mg/kg	0.02	-	<0.02		<0.02
Perfluorotridecanoic acid*	mg/kg	0.02		<0.02		<0.02
Periluorotridecarioic acid	mg/kg	0.02		<0.02		<0.02

ANALYTICAL REPORT

ME304337 R1

		ample Number Sample Matrix Sample Date Sample Name	ME304337.021 Soil 22 Sep 2017 BH9-0.4-0.6	ME304337.022 Soil 22 Sep 2017 BH10-0.1-0.2	ME304337.023 Soil 22 Sep 2017 BH10-1.0-1.1	ME304337.024 Soil 22 Sep 2017 QA1
Parameter	Units	LOR				
Perfluoronated Surfactants in Soils MA_1523.SL.01 Meth	od: MA_1523	Tested: 10/10/	2017			
10:2 Fluorotelomersulphonate*	mg/kg	0.01	- 51	<0.01	- 1	<0.01
4:2 Fluorotelomersulphonate*	mg/kg	0.01	-	<0.01	-	<0.01
6-2 Fluorotelomer Sulfonate*	mg/kg	0.01		<0.01		<0.01
8:2 Fluorotelomersulphonate*	mg/kg	0.01		<0.01	-	<0.01
N-Ethyl-heptadecafluorooctane sulphonamide*	mg/kg	0.01	-	<0.01	-	<0.01
Perfluorooctanesulfonamidoacetic acid (FOSAA)*	mg/kg	0.01		<0.01	-	<0.01
N-Ethyl-heptadecafluorooctane sulphonamidoethanol*	mg/kg	0.01	4	<0.01	-	<0.01
N-Methyl-heptadecafluorooctane sulphonamide*	mg/kg	0.01		<0.01	-	<0.01
N-Methyl-heptadecafluorooctane sulphonamidoethanol*	mg/kg	0.01		<0.01		<0.01
Perfluorononanoic acid	mg/kg	0.01		<0.01		<0.01
Perfluorooctane sulfonate	mg/kg	0.01	2.0	0.52		0.30
Perfluorooctanoic Acid	mg/kg	0.01		<0.01		<0.01
Perfluorobutanoic acid*	mg/kg	0.01		<0.01		<0.01
Perfluorobutane sulfonate*	mg/kg	0.01		<0.01	-	<0.01
Perfluorodecanoic acid*	mg/kg	0.01		<0.01		<0.01
Perfluorodecane sulfonate*	mg/kg	0.01	-	<0.01		<0.01
Perfluoro-1-dodecanesulfonate (PFDoS)*	mg/kg	0.01		<0.01		<0.01
Perfluorodecylphosphonic acid (PFDPA)*	mg/kg	0.02		<0.02		<0.02
Perfluorododecanoic acid*	mg/kg	0.01	-	<0.01		<0.01
Perfluoro-1-heptanesulfonate (PFHpS)*	mg/kg	0.01		0.01		<0.01
Perfluoroheptanoic acid*	mg/kg	0.01		<0.01	-	<0.01
Perfluorohexanoic acid*	mg/kg	0.01	-	<0.01		<0.01
Perfluorohexylphosphonic acid (PFHxPA)*	mg/kg	0.01	-	0.05		<0.01
Perfluoro-n-hexadecanoic acid (PFHxDA)*	mg/kg	0.01		<0.01		<0.01
Perfluoro-1-nonanesulfonate (PFNS)*	mg/kg	0.01		<0.01		<0.01
Perfluorohexane sulfonate*	mg/kg	0.01		0.06	_	<0.01
Perfluorooctadecanoic Acid*	mg/kg	0.01	-	<0.01		<0.01
Perfluorooctylphosphonic acid (PFOPA)*	mg/kg	0.01	-	<0.01		<0.01
Perfluoroctane sulfonamide*	mg/kg	0.01	-	0.02		0.02
Perfluoropentanoic acid*	mg/kg	0.01		<0.01		<0.01
Perfluorotetradecanoic acid*	mg/kg	0.01	-	<0.01		<0.01
Perfluorotridecanoic acid*	mg/kg	0.01		<0.01		<0.01
Perfluoroundecanoic acid*	mg/kg	0.01		<0.01		<0.01

QC SUMMARY

ME304337 R1

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Moisture Content Method: ME-(AU)-[ENV]AN002

Parameter	QC Reference	Units	LOR	DUP %RPD
% Moisture*	LB016143	%w/w	1	1 - 5%

Perfluoronated Surfactants in Soil - TOPS Method: MA_1523_TOPS

Parameter	QC Reference	Units	LOR	МВ	DUP %RPD	LCS %Recovery	MS %Recovery	MSD %RPD
10:2 Fluorotelomersulphonate*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
4-2 Fluorotelomersulphonate*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
6-2 Fluorotelomer Sulfonate*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
9:2 Fluorotelomersulphonate*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
N-Ethyl-heptadecafluorooctane sulphonamide*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
N-Ethyl-heptadecafluorooctane sulphonamidoethanol*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
N-Methyl-heptadecafluorooctane sulphonamide*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
N-Methyl-heptadecafluorooctane sulphonamidoethanol*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorononanoic acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorooctane sulfonate*	LB016061	mg/kg	0.02	<0.02	0 - 67%	NA	NA	NA
Perfluorooctanesulfonamidoacetic Acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorooctanoic Acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorobutanoic acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorobutane sulfonate*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorodecanoic acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorodecane sulfonate*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluoro-1-dodecanesulfonate*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorodecylphosphonic acid*	LB016061	mg/kg	0.04	<0.04	0%	NA	NA	NA
Perfluorododecanoic acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluoro-1-heptanesulfonate*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluoro-1-nonanesulfonate*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluoroheptanoic acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorohexanoic acid*	LB016061	mg/kg	0.02	<0.02	67%	NA	NA	NA
Perfluoro-n-hexadecanoic acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorohexane sulfonate*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorohexylphosphonic acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorooctadecanoic Acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorooctylphosphonic acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluoroctane sulfonamide*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluoropentanoic acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorotetradecanoic acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorotridecanoic acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluoroundecanoic acid*	LB016061	mg/kg	0.02	<0.02	0%	NA	NA	NA

QC SUMMARY

ME304337 R1

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Perfluoronated Surfactants in Soils MA_1523.SL.01 Method: MA_1523

Parameter	QC Reference	Units	LOR	МВ	DUP %RPD	LCS %Recovery	MS %Recovery	MSD %RPD
10:2 Fluorotelomersulphonate*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
4:2 Fluorotelomersulphonate*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
6-2 Fluorotelomer Sulfonate*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
8:2 Fluorotelomersulphonate*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
N-Ethyl-heptadecafluorooctane sulphonamide*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluorooctanesulfonamidoacetic acid (FOSAA)*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
N-Ethyl-heptadecafluorooctane sulphonamidoethanol*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
N-Methyl-heptadecafluorooctane sulphonamide*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
N-Methyl-heptadecafluorooctane sulphonamidoethanol*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluorononanoic acid	LB016168	mg/kg	0.01	<0.01	0%	64%	72%	14%
Perfluorooctane sulfonate	LB016168	mg/kg	0.01	<0.01	0 - 7%	78%	86%	12%
Perfluorooctanoic Acid	LB016168	mg/kg	0.01	<0.01	0%	64%	67%	19%
Perfluorobutanoic acid*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluorobutane sulfonate*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluorodecanoic acid*	LB016168	mg/kg	0.01	<0.01	0%	61%	69%	8%
Perfluorodecane sulfonate*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluoro-1-dodecanesulfonate (PFDoS)*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluorodecylphosphonic acid (PFDPA)*	LB016168	mg/kg	0.02	<0.02	0%	NA	NA	NA
Perfluorododecanoic acid*	LB016168	mg/kg	0.01	<0.01	0%	42%	47%	6%
Perfluoro-1-heptanesulfonate (PFHpS)*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluoroheptanoic acid*	LB016168	mg/kg	0.01	<0.01	0%	61%	64%	16%
Perfluorohexanoic acid*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluorohexylphosphonic acid (PFHxPA)*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluoro-n-hexadecanoic acid (PFHxDA)*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluoro-1-nonanesulfonate (PFNS)*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluorohexane sulfonate*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluorooctadecanoic Acid*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluorooctylphosphonic acid (PFOPA)*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluoroctane sulfonamide*	LB016168	mg/kg	0.01	0.01	0%	NA	NA	NA
Perfluoropentanoic acid*	LB016168	mg/kg	0.01	<0.01	0%	NA	NA	NA
Perfluorotetradecanoic acid*	LB016168	mg/kg	0.01	<0.01	0%	33%	33%	8%
Perfluorotridecanoic acid*	LB016168	mg/kg	0.01	<0.01	0%	36%	42%	6%
Perfluoroundecanoic acid*	LB016168	mg/kg	0.01	<0.01	0%	47%	56%	5%

METHOD SUMMARY

ME304337 R1

METHOD

METHODOLOGY SLIMMARY

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of

moisture will take some time in a drying oven for complete removal of water.

MA1523

This method is intended for the analysis of polyfluorinated compounds (PFCs) by High Performance Liquid

Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS).

A weighed soil sample is solvent extracted with acetonitrile/methanol then filtered into a 1 mL polypropylene for

analysis by LC-MS/MS.

MA1523-TOPS

This method is intended for the analysis of polyfluorinated compounds (PFCs) by High Performance Liquid

Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS).

Soil and sediment samples undergo oxidative pre-treatment (TOPs) prior to concentration using Solid Phase Extraction (SPE) and the SPE cartridge is eluted with 4ml of 0.1% acetic acid/ACN and then 4 ml of ACN. The eluent is then concentrated and transferred to a 1 mL polypropylene GC vial for analysis by LC-MS/MS.

FOOTNOTES __

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

NATA accreditation does not cover the

performance of this service.

** Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

↑↓ Raised or Lowered Limit of Reporting QFH QC result is above the upper tolerance

QFL QC result is below the lower tolerance

- The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

SGS				c	HAI	N C)F C	USTO	DY 8	& AN	NALY	'SI	S R	EQI	JES	т					Page	-1_	_ of	3	
SGS Environmental Se	ervices	Compa	any Nam	e:	Arcad	is							Proje	ct Nam	e/No:	_	17267	7							
Unit 16, 33 Maddox St	reet	Addres	ss:		Canbo	erra		-						nase O		-									
Alexandria NSW 2015												_		Its Req	uired l	Ву: _									
Telephone No: (02) 85				-								-		hone:		_			3						
Facsimile No: (02) 85			ct Name:	_										imile: I Resul		17			-	cadis.		-			
Email: au.samplereceipt.sy	dney@sgs.com		_	Т	_						Т		Emai	Resul	is:				tware	adis.	Com				-
_Client Sample ID	Date Sampled	Lab Sample			RVATIVE	CONTAINERS	o PFAS	say PFAS																	
		ID	WATER	SOIL	PRESER	NO OF	Standard	TOP Ass							505 1	Melbo		FUE							
BH1-0.05-0.15	22/9/17			X			X	X						Τi		MINI	Jurne II II II II	I IIIII		•					
BH1-0.4-0.6	22/9/17	-11-71-71-7		X										\top											
BH1-0.9-1.1	22/9/17		\top	X								Orac equity								ı					
BH2-0.0-0.2	22/9/17			X			X							TI	MF	304	33	7 ('n						
BH2-0.4-0.6	22/9/17			X										Ti	Recei	ved:	02-0	Oct -	2017						
BH2-0.9-1.1	22/9/17			X													S425.H 161	2023							
BH3-0.0-0.1	22/9/17			X			X	X				- California		T											
BH3-0.4-0.6	22/9/17		1	X																				-	
BH3-0.9-1.1	22/9/17			X								. ,			1,										
Relinquished By:		D	ate/Time	e: Rev	rised 4	V10/1	7			Receiv	ved By	11	Les	1	1/2	rech		Date/1	ime	10	117	18.	45a	~	
Relinquished By:		D	ate/Time	e:						Receiv	ved By:		1		U				Time /						
Samples Intact: Yes/ No		T	emperat	ure:	Ambie	nt / C	hilled			Sampl	le Coole	er Se	aled:	Yes/	No		ı	abora	atory C	Quota	tion No) :			
		С	comment	ts: Ple	ase er	mail ir	voice	to accou	ts@en	vironm	entalstra	ategi	es.co	m.au											

SGS				C	HA	IN C)F C	USTO	OY & A	NAL	YSI	S RE	EQI	JEST					Page2 of3
SGS Environmental S	ervices	Compan	y Nam	e:	Arcad	lis						Project			1726	7			
Unit 16, 33 Maddox St	reet	Address	:		Canb	erra								der No:					
Alexandria NSW 2015														uired By:					
Telephone No: (02) 85												Teleph					β	_	
Facsimile No: (02) 85		Contact	Name:	_		,						Facsin Email I			_		@arc	ndie .	
Email: au.samplereceipt.sy	dney@sgs.com		_		_						_	Email	Resul	is:			i@arc	auis.	T
	Date	Lab			TIVE	TAINERS	AS	PFAS											
Client Sample ID	Sampled	Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	Standard PFAS	TOP Assay											
BH4-0.0-0.2	22/9/17			X			х												
BH4-0.4-0.6	22/9/17			X															
BH5-0.0-0,2	22/9/17			X			х												
BH5-0.4-0.6	22/9/17			X															
BH6-0.0-0.2	22/9/17		1	X			X	X											
BH6-0.4-0.6	22/9/17			X															
BH7-0.0-0.2	22/9/17		1	Х			X	X											
BH7-0.4-0.6	22/9/17		1	X															
BH8-0.02-0.2	22/9/17			X			X												
Relinquished By:		Da	te/Tim	e:			-	-	Rec	eived By	r.					Date/			
Relinquished By:		1	te/Tim							eived By						Date/T			
Samples Intact: Yes/ No)	Te	mpera	ture:	Ambi	ent / C	hilled		Sam	ple Coo	ler Se	aled:	Yes/	No		Labora	atory Q	luota	tion No:
		Co	mmen	ts:															

SGS					CHA	IN C)F C	USTO	DY &	ΑN	IAL	YS	S R	EQ	UEST	•				Pa	age _	_3 of	_3	
SGS Environmental S	ervices	Compa	any Nan	ne:	Arcad	lis			- Abduu				Proje	ct Nan	ne/No:	W	BFS-	COON	ABS - 1	17267				
Unit 16, 33 Maddox St	reet	Addres	ss:		Canb	епта									rder No:									
Alexandria NSW 2015															quired By	: _								
Telephone No: (02) 85														hone:		-	_	3						
Facsimile No: (02) 85 Email: au.samplereceiptsy			t Name	•									Facs	mile: I Resu	lto:			-	arcadis	- com				
Email: au.samplereceipcsy	dney@sgs.com	<u>' </u>	_	_	1								T	Resu	its.			-	al Cauls	5.00111				
	Date	Lab			rive	TAINERS	AS	PFAS																
Client Sample ID	Sampled	Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	Standard PFAS	TOP Assay																
BH8-0.4-0.6	22/9/17			X																				
BH9-0.02-0.2	22/9/17			X			X												1					
BH9-0.4-0.6	22/9/17			X								-												
BH10-0.1-0.2	22/9/17		1	X			X	x				50000						\top		1				
BH10-1.0-1.1	22/9/17			X													\top							
QA1	22/9/17			X			X	X																
			+		-	Н	_	 	TT					Т			_	Т	Т	Т				_
			+			\vdash			+							_	_	1	+	+				
Relinquished By:		Da	ate/Time	e:					Re	eceiv	ed By	:					Date	Time	,					-
Relinquished By:		Da	ate/Tim	9:					Re	eceiv	ed By	:					Date	Time						
Samples Intact: Yes/ No		Te	emperat	ure:	Ambie	nt / C	hilled		Sa	ample	e Cool	er Se	ealed:	Yes/	No		Labo	ratory	Quota	ation	No:			
	and a control of the	Co	ommen	ls:																				

CERTIFICATE OF ANALYSIS

Work Order

: ES1724553

Client

ARCADIS AUSTRALIA PACIFIC PTY LTD

Contact

Address : LEVEL 5, 141 MILLER STREET

NORTH SYDNEY NSW, AUSTRALIA 2065

Telephone

: +61 03

: EN/091/16

Project

: WBFS - COOMBS - 17267

Order number

C-O-C number

Sampler Site

Quote number

No, of samples received

No. of samples analysed

Page

: 1 of 5

Laboratory

: Environmental Division Sydney

Contact

Address

277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone

Date Samples Received Date Analysis Commenced

: 29-Sep-2017 16:15 : 03-Oct-2017

: +61-2-

Issue Date

: 09-Oct-2017 15:18

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 1

: 1

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Edwandy Fadjar

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Position

Accreditation Category

Alex Rossi

Organic Chemist

Organic Coordinator

Sydney Organics, Smithfield, NSW Sydney Inorganics, Smithfield, NSW

Page : 2 of 5 Work Order : ES1724553

Client : ARCADIS AUSTRALIA PACIFIC PTY LTD

Project : WBFS - COOMBS - 17267

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details,

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

EP231: Particular samples required dilution due to the presence of high level contaminants. LOR values have been adjusted accordingly.

Page

Work Order

: 3 of 5 : ES1724553

Client

: ARCADIS AUSTRALIA PACIFIC PTY LTD : WBFS - COOMBS - 17267

Project

Analytical Results

ub-Matrix: SOIL Matrix: SOIL)		Clien	nt sample ID	QA2			
iduix: SOIL)	Cli	ent samplin	g date / time	22-Sep-2017 00:00			
ompound	CAS Number	LOR	Unit	ES1724553-001			
ompound	Or to realize			Result		-	 -
A055: Moisture Content (Dried @ 105	5-110°C)		UPAGE AND THE				
Moisture Content		. 1.0	%	17.8			
:P231_TOP_A: Perfluoroalkyl Sulfoni	c Acids	Sec.	PERCENT.				
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002			
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	****		
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	0.0037			
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	0.0008			
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.322			
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002			
EP231_TOP_B: Perfluoroalkyl Carbox	vlic Acids						
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001			
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	0.0054			
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	0.0402			
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	0.0016			
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	0.0045			
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002			
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002			
Perfluoroundecanoic acid	2058-94-8	0.0002	mg/kg	<0.0002	y 'y		
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002			
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002			
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0006			
EP231_TOP_C: Perfluoroalkyl Sulfor	namides						
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	8000.0			
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0006			

Page : 4 of 5 Work Order : ES1724553

Client : ARCADIS AUSTRALIA PACIFIC PTY LTD

Project : WBFS - COOMBS - 17267

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QA2	S		
	C	ient samplir	ng date / time	22-Sep-2017 00:00			
Compound	CAS Number	LOR	Unit	ES1724553-001	******		
				Result			 -
P231_TOP_C: Perfluoroalkyl Sulfonar	mides - Continued						
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0006			
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	2448-09-7	0.0005	mg/kg	<0.0006			
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0006			
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002		****	
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002			
P231_TOP_D: (n:2) Fluorotelomer Sulf	onic Acids						
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005			
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005			
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005			
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005			
P231_TOP_P: PFAS Sums							
Sum of PFAS		0.0002	mg/kg	0.379			
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.0002	mg/kg	0.326			
Sum of TOP C4 - C14 Carboxylates and C4 - C8 Sulfonates		0.0002	mg/kg	0.378			
Sum of TOP C4 - C14 as Fluorine		0.0002	mg/kg	0.245			
P231_TOP_S: PFAS Surrogate							
13C4-PFOS		0.0002	%	130			

Page

5 of 5 ES1724553 Work Order

: ARCADIS AUSTRALIA PACIFIC PTY LTD : WBFS - COOMBS - 17267 Client

Project

Surrogate Control Limits

Sub-Matrix: SOIL	Recovery	Limits (%)
Compound CAS Nui	mber Low	High
EP231_TOP_S: PFAS Surrogate		
13C4-PFOS	60	130

QUALITY CONTROL REPORT

: ES1724553 **Work Order**

ARCADIS AUSTRALIA PACIFIC PTY LTD

Contact

Client

Address : LEVEL 5, 141 MILLER STREET

NORTH SYDNEY NSW, AUSTRALIA 2065

Telephone : +61 03 8623 4000

Project : WBFS - COOMBS - 17267

Order number

C-O-C number

Sampler Site

Quote number : EN/091/16

No. of samples received : 1

No. of samples analysed : 1 Page

: 1 of 5

Laboratory

: Environmental Division Sydney

Contact

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

: 03-Oct-2017

Telephone

: +61-**Date Samples Received** : 29-Sep-2017

Date Analysis Commenced

Issue Date : 09-Oct-2017

Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Sydney Inorganics, Smithfield, NSW Page Work Order : 2 of 5

Client

: ES1724553 · ARCADIS AUSTRALIA PACIFIC PTY LTD

Project

· WBFS - COOMBS - 17267

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key:

Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

ub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 1149533)							
ES1724542-086	Anonymous	EA055: Moisture Content		1	%	18.9	19.6	3.48	0% - 50%
ES1724550-005	Anonymous	EA055: Moisture Content		1	%	<1.0	<1.0	0.00	No Limit
EP231 TOP A: Per	fluoroalkyl Sulfonic Aci	ds (QC Lot: 1148463)							
EB1720154-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	0.0047	0.0055	14.8	0% - 20%
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0214	0.0255	17.6	0% - 20%
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	0.0012	0.0009	27.2	No Limit
EP231 TOP B: Per	fluoroalkyl Carboxylic A	Acids (QC Lot: 1148463)							
EB1720154-001	Anonymous	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
	N. 250	EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	0.0032	0.0032	0.00	0% - 50%
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	0.0012	0.0012	0.00	No Limit
	11	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	0.0016	0.0016	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	0.0008	0.0008	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	0.0026	0.0026	0.00	0% - 50%
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	0.0006	0.0008	26.4	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	0.0008	0.0011	21.0	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0006	<0.0006	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	0.014	0.013	0.00	0% - 50%
EP231 TOP C: Pe	rfluoroalkyl Sulfonamid	les (QC Lot: 1148463)							
EB1720154-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	0.0009	0.0008	15.4	No Limit

A

Page Work Order 3 of 5 ES1724553

Client

: ARCADIS AUSTRALIA PACIFIC PTY LTD

Project

: WBFS - COOMBS - 17267

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
	fluoroalkyl Sulfonamid	les (QC Lot: 1148463) - continued		100000					
EB1720154-001	Anonymous	EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0006	<0.0006	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0006	<0.0006	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	2448-09-7	0.0005	mg/kg	<0.0006	<0.0006	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0006	<0.0006	0.00	No Limit
P231_TOP_D: (n:2)	Fluorotelomer Sulfoni	ic Acids (QC Lot: 1148463)						VEXE C	
B1720154-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	0.0342	0.0334	2.24	0% - 20%
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	0.0373	0.0344	7.90	0% - 20%
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	0.0082	0.0055	39.1	0% - 50%
P231_TOP_P: PFA	S Sums (QC Lot: 1148	463)							
B1720154-001	Anonymous	EP231X: Sum of PFAS		0.0002	mg/kg	0.133	0,130	1.82	0% - 20%
		EP231X: Sum of PFHxS and PFOS	355-46-4/1763- 23-1	0.0002	mg/kg	0.0261	0.0310	17.1	0% - 20%
		EP231X: Sum of TOP C4 - C14 Carboxylates and C4 - C8 Sulfonates		0.0002	mg/kg	0.0509	0.0553	8.29	0% - 20%

Page : 4 of 5
Work Order : ES1724553

Client : ARCADIS AUSTRALIA PACIFIC PTY LTD

Project : WBFS - COOMBS - 17267

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

ub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
lethod: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
P231_TOP_A: Perfluoroalkyl Sulfonic Acids (QCLot: 1	148463)							
P231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002				
P231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002				
P231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	0.006 mg/kg	81.7	50	150
P231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	0.003 mg/kg	66.2	50	150
P231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<0.0002	0.066 mg/kg	102	50	150
P231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002				
P231_TOP_B: Perfluoroalkyl Carboxylic Acids (QCLot	t: 1148463)							
P231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	0.0082 mg/kg	84.5	50	150
P231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	0.0168 mg/kg	83.2	50	150
P231X: Perfluoropernanios asid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	0.0177 mg/kg	93.3	50	150
P231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	0.0033 mg/kg	106	50	150
P231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	0.0036 mg/kg	90.6	50	150
P231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002				
P231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002				
P231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002				
P231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002				-
P231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002				
P231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005				
P231_TOP_C: Perfluoroalkyl Sulfonamides (QCLot: 1	148463)							
P231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002				
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005				
P231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005		****		
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	2448-09-7	0.0005	mg/kg	<0.0005		-	V	
P231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005		-		
P231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002				_
P231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002		-		
EP231_TOP_D: (n:2) Fluorotelomer Sulfonic Acids (QC	Lot: 1148463)							
P231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005				
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	-			-
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005				

ALS

Page : 5 of 5 Work Order : ES1724553

Client : ARCADIS AUSTRALIA PACIFIC PTY LTD

Project : WBFS - COOMBS - 17267

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231_TOP_D: (n:2) Fluorotelomer Sulfonic Acids (QC	Lot: 1148463) - con	tinued					HT.	
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005		T 1		
EP231_TOP_P: PFAS Sums (QCLot: 1148463)								
EP231X: Sum of PFAS		0.0002	mg/kg	<0.0002		T 1		
EP231X: Sum of PFHxS and PFOS	355-46-4/17 63-23-1	0.0002	mg/kg	<0.0002		_		-
EP231X: Sum of TOP C4 - C14 Carboxylates and C4 - C8 Sulfonates		0.0002	mg/kg	<0.0002				5

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

: 1 of 4

Work Order : ES1724553

Client : ARCADIS AUSTRALIA PACIFIC PTY LTD Laboratory : Environmental Division Sydney

Site :-- Issue Date : 09-Oct-2017
No. of samples received : 1

Sampler : --- No. of samples received : 1
Order number : --- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : ES1724553

Client : ARCADIS AUSTRALIA PACIFIC PTY LTD

Project : WBFS - COOMBS - 17267

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: × = Holding time	breach ; < = Withi	n holding tim
Method Service Control of the Contro	Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
HDPE Soil Jar (EA055) QA2	22-Sep-2017				03-Oct-2017	06-Oct-2017	1
EP231_TOP_A: Perfluoroalkyl Sulfonic Acids							
HDPE Soil Jar (EP231X (TOP)) QA2	22-Sep-2017	04-Oct-2017	21-Mar-2018	1	04-Oct-2017	13-Nov-2017	1
EP231_TOP_B: Perfluoroalkyl Carboxylic Acids				ARCHITECTURE OF			
HDPE Soil Jar (EP231X (TOP)) QA2	22-Sep-2017	04-Oct-2017	21-Mar-2018	1	04-Oct-2017	13-Nov-2017	1
EP231_TOP_C: Perfluoroalkyl Sulfonamides							
HDPE Soil Jar (EP231X (TOP)) QA2	22-Sep-2017	04-Oct-2017	21-Mar-2018	1	04-Oct-2017	13-Nov-2017	1
EP231_TOP_D: (n:2) Fluorotelomer Sulfonic Acids							
HDPE Soil Jar (EP231X (TOP)) QA2	22-Sep-2017	04-Oct-2017	21-Mar-2018	1	04-Oct-2017	13-Nov-2017	1
EP231_TOP_P: PFAS Sums				SUSTEMBRE			
HDPE Soil Jar (EP231X (TOP)) QA2	22-Sep-2017	04-Oct-2017	21-Mar-2018	1	04-Oct-2017	13-Nov-2017	1

ALS

Page : 3 of 4
Work Order : ES1724553

Client : ARCADIS AUSTRALIA PACIFIC PTY LTD

Project : WBFS - COOMBS - 17267

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)					SAME WAS SHOULD		
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PFAS by LCMSMS after oxidation (TOP)	EP231X (TOP)	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PFAS by LCMSMS after oxidation (TOP)	EP231X (TOP)	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)			100				
PEAS by LCMSMS after oxidation (TOP)	EP231X (TOP)	1	8	12.50	5.00	/	NEPM 2013 B3 & ALS QC Standard

Page : 4 of 4 Work Order : ES1724553

Client : ARCADIS AUSTRALIA PACIFIC PTY LTD

Project : WBFS - COOMBS - 17267

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
PFAS by LCMSMS after oxidation (TOP)	EP231X (TOP)	SOIL	In house, following oxidation per Houtz, Erika F.; Sedlak, David L. (2012): Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff. In Environmental Science & Technology 46 (17), pp. 9342¿9349.: A portion of the oxidised sample is mixed with methanol (1:1) prior to analysis by LC-Electrospray-MS-MS, Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers.
Preparation Methods	Method	Matrix	Method Descriptions
OP Digest for PFAS on soil Extract.	* ORG70-S	SOIL	In-House Extraction followed by digestion with oxidation per Houtz, Erika F.; Sedlak, David L. (2012): Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff. In Environmental Science & Technology 46 (17), pp. 9342¿9349: A soil extract is taken to near dryness and made up to 5 mL with reagents. The sample is digested with persulfate under alkaline conditions, neutralised and prepared for analysis per EP231.

SGS	8) 40			C	HA	N C)F C	JSTODY &	ANALYS	IS R	EQU	IEST		Page3 of _3
SGS Environmental S	Services	Compa	any Nam	e:	Arcad	lis	-			Projec	t Name	/No:	WBFS - COO	MBS - 17267
Unit 16, 33 Maddox S		Addres	SS:		Canb	erra		t .		_		der No:		
Alexandria NSW 2015										-		uired By:		
Telephone No: (02) 85 Facsimile No: (02) 8		Contac	t Name:		_		_			Telepi Facsir				
Email: au.samplerecelpt.sy				34						-	Results	3:	1	arcadis.com
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	TOP Assay PFAS							Environmental Division Sydney Work Order Reference ES1724553
BH8-0.4-0.6	22/9/17		1	X	†					-			1111	
BH9-0.02-0.2	22/9/17		\top	X			х							
BH9-0.4-0.6	22/9/17			X										
BH10-0.1-0.2	22/9/17			X			х			1				Telephone () A Telephone ()
BH10-1.0-1.1	22/9/17			X	1								111	Telephone: + 61-2-6794 8655
QA1	22/9/17			X	†		х					_		
QA2	22/9/17			X			x				PI	ease for	ward to ALS	
			-	-				+++		-				
Relinquished By:		D	ate/Tim	e:				Re	ceived By:	1	0.0	101.	Date/Time	29 1911) 984
Relinquished By:		Di	ate/Tim	e:					ceived By:	20	20)	Ju	Date/Time	27 111) 424
Samples Intact: Yes/ No		Te	empera	ture:	Ambie	ent / C	hilled	Sa	mple Cooler S	Sealed:	Yes/ I	No	Laborator	y Quotation No:
1.	741	C	ommen	ts:										

SOIL PFAS INVESTIGATION - 172678

APPENDIX D

Tables Analytical Results

					_												Perflu	oronate	d Surfac	tants in	Soil - TO	PS													
			1.2 Fluorotelomersulphonate	2 Fluorotelomersulphonate	2 Fluorotelomer Sulfonate	2 Fluorotelomersulphonate	Ethyl-heptadecafluorooctane ilphonamide	Ethyl-heptadecafluorooctane ilphonamidoethanol	Methyl-heptadecafluorooctane ilphonamide	Methyl-heptadecafluorooctane ilphonamidoethanol	erfluorononanok acid	erfluorooctane sulfonate	-Methyl perfluorooctane ulfonamidoethanol (MeFOSE)	erfluorooctanoic Acid	erfluorobutanoic acid	erfluorobutane sulfonate	erfluorodecanoic acid	erfluorodecane sulfonate	erfluoro-1-dodecanesulfonate	erfluorodecylphosphonic acid	erfluorododecanoic acid	erfluoro-1-heptanesulfonate	erfluoro-1-nonanesulfonate	erfluoroheptanoic acid	erfluorohexanolc acid	erfluoro-n-hexadecanoic acid	erfluorohexane sulfonate	erfluorohexylphosphonic acid	erfluorooctadecanoic Acid	erfluorooctylphosphonic acid	erfluoroctane sulfonamide	erfluoropentanok acid	erfluorotetradecanoic acid	erfluorotridecanoic acid	erfluoroundecanoic acid
			- A	et market	ma/ka	ma/ka	ma/ka	2 3 ma/ke	ma/ka	me/ke	ma/ke	me/ke	me/ke	me/ke	me/ke	me/ke	mg/kg	me/ke	mg/kg	mg/kg	me/ke	mg/kg	me/ke	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
FOI			0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.04	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
EQL NEW OF	H and NSW Health - HIL	Δ.	0.02	0.02	5.02		1000	1000	1000		0.50		10000	0.1	EII.	1	No.		19							1000		170							
	alculated - plant uptake		1000	Circ.	DOM:	100	1000	1000	0000	Paris	BOOK STATE	100	C. C.C.	1000	1	To the same	Carried Street	No.	1		10.16	200	-		Marie	1000				1000	200	The same		SCHOOL STATE	227
	Sample_Depth_Rang	31 (520-55-1)	ne .														. 12																		
BH1	0.05-0.15	22-09-2017		<0,02	<0.02	40,00	<0.02	<0.02	40,00	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	<0.04		<0.02	<0,02	-	-	-	₹0,02	<0,02		0.02	0.02	<0.02	<0.02	<0.02	<0.02
BH2	0.0-0.2	22-09-2017	N.A.	N.A.	N.A.	N.A.	N.A.	NA.	N.A.	N.A.	N.A.	N.A.	N.A.	N,A.	N.A.	NA.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
внз	0.0-0.1	22-09-2017	40.02	<0.02	<0.02	40.02	<0.02	<0.02	40.02	<0.02	<0.02	0.06	<0.00	<0.02	<0.02	40.02	<0.02	×6.02	<0.02	<0.04	-	<0.00	<0.02	<0.00	40.02	-	<0.02	<0.02	-	0.02	0.02	<0.02	<0.02	<0.02	<0.02
BH4	0.0-0.2	22-09-2017	N.A.	NA.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	NA.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	NA.
BH5	0.0-0.2	22-09-2017	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N,A,	NA.		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N,A,	N.A.	N.A.	N.A.	N.A.	N,A,	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
вне	0.0-0.2	22-09-2017	<0.00	< 0.02	<0.02	<0.02	< 0.02	<0.00	<0.02		<0.02	0.04	<0.02	<0,02	-	40.02	<0.02	<0.02	<0.02	<0.04	and the second	<0.00	< 0.02	<0.02	40.00	-	<0.02	<0,02	-	<0.02	0.02	<0.02	<0.02	<0.02	<0.00
BH7			<0.02	<0.02	<0.02	<0.02	<0.00	<0.02	<0.02	0.02	<0.02	0.74	<0.02	40.02	<0.02	-	<0.02	<0.02	-	<0.04		<0.02		<0.02	0.06	<0.02	<0.02	0.02	<0.02	<0.02	0.02	<0.02	<0.02		<0.02
QA1	0.0-0.2	22-09-2017	40.02	<0.02	<0.03	<0.02	<0.02	<0.02	<0.02	<0.02	and the same of	0.34	<0.00	<0.02	<0.00		aminimizacionimi	<0.02	<0.02	<0.04	-	<0.02	-	<0.00	<0.02	-	-	<0.02	-	<0.02	0.02	<0.00	<0.02	<0.00	<0.02
QA2	1000000	100000000000000000000000000000000000000	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	-00.0000	0.322	-	0.0045	-	-	<0.0002	_	N.A.	N.A.	<0.0000	N.A.	N.A.	-	0.0402	-	0.004	NA.	N,A.	N.A.	N.A.	0.0054		<0.0002	-
вна	0.02-0.2	22-09-2017	N.A.	N.A.	N,A,	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N,A	N.A.	N.A.	N.A.	N.A.	NA.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	NA.
внэ	0.02-0.2	22-09-2017	N.A.		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	-	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	H.A.	N.A.	N.A.	N.A.	N.A.	0.02	0.02	N.A. 40.02	40.02	N.A. <0.02	N.A.
BH10	0.1-0.2	22-09-2017	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.00	0.82	<0.02	0.02	<0.02	<0.00	<0.02	<0.02	<0.02	<0.04	<0.02	0.02	<0.02	<0.02	0.04	<0.02	80.0	0.08	<0.02	0.02	0.02	SPILE	1 40775	10002	50,02
Statisti	cal Summary																,																	-	-
Numbe	r of Results		6	6	6	- 6	6	6	6	6	7	7	7	7	7	6	7	6	6	- 6	7	6	6	7	7	6	7	6	6	6	6	7	7	7	7
Numbe	r of Detects		0	0	0	0	0	0	0	1	0	7	0	2	0	0	0	0	0	0	0	1	0	1	3	0	2	2	0	3	6	1	0	0	0
Minima	ım Concentration		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.0003	0.02	<0.000	6 0.005	<0.00		<0.0002			-	<0.0002		<0.02					-	-	-		0.0054	-	5 < 0.0002	-
Minima	ım Detect		ND	ND	ND	ND	ND	ND	ND	0.02	ND	0.02	ND	0.005		ND	ND	ND	ND	ND	ND	0.02	ND	0.002	-	ND	0.004		ND	0.02	0.02	0.0054	ND	ND	ND
Maxim	um Concentration		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	0.82			<0.02			<0.02				0.02	<0.02			<0.02	-	0.08		-		<0.02	<0.02		<0.02
Maxim	um Detect		ND	ND	ND	ND	ND	ND	ND	0.02	ND	0.82	ND	0.02	ND	ND	ND	ND	ND	ND	ND	0.02	ND	0.002		ND	0.08	0.08	ND	0.02	0.02		ND	ND	ND
Averag	e Concentration		0.01	0.01	0.01	0.01	0.01	0.01	0.01		0.0086		0.0086		0.009		0.0086			0.02			-	0.009				0.023		0.015			-	0.0086	and the local division in
Median	Concentration		0.01	0.01	0.01	0.01		0.01	0.01				0.01		0.01		0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.015		0.01	0.01	0.01	0.01
Standa	rd Deviation		0	0	0	0	0	0	0		0.0037		0.0037				0.0037		0	0	0.0037		+	0.003	-	-	-	0.028		0.006		0.0017	-	0.0037	
Numbe	er of Guideline Exceedan	ces	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Numbe	er of Guideline Exceedan	ces(Detects Only)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PFOS Soil Assessment B22 S97 Charmwood

																Perfluor	Perfluoronated Surfactants	urfactan	,														
		93:01 Fluorotelomersulphonate	stanodqluzramolatoroul? S:P	6-2 Fluorotelomer Sulfonate	8:2 Fluorotelomersulphonate	W-Ethyl-heptadecafluorooctane sulphonamide	Perfluorooctane sulfonamide (A2O3)	N-Ethyl-heptadecalluorooctane sulphonomanidoethanol	N-Methyl-heptadecafluorooctane sulphonamide	N-Methyl-heptadecalluorooctane lonerhaobimenorique	Perfluorononanoic acid	Perfluorooctane sulfonate	Perfluorooctanoic Acid bise slonetudoroulhas	Perfluorobutane sulfonate	Perfluorodecanoic acid	Perfluorodecane suifonate	Perfluoro-1-dodecanesulfonate (PFDoS)	Perfluorodecylphosphonic acid	Perfluorododecanoic acid	Perfluoro-1-heptanesulfonate	Perfluoroheptanoic acid	Perfluorohexanoic acid	Perfluorohexylphosphonic acid	Perfluoro-n-hexadecanoic acid (AGMFT)	PFNS)	estenolius enexadosoulhes	bina nionesabetaooroufhe	PFOPA) PFOPA)	abimenoflus anetzonoufha	bize zionentanoiculha	bise sionesabertatoroulha	bise sionessbirtoroufhe	bise sioneseanoicacid
		mg/kg	mg/kg	mg/kg	8	34/	2 V	/kg	24/	B'A	m 3x/3u	59	8	Ε	E	E	m.	g	E		E	mg/kg			E	mg/kg	mg/kg		mg/kg	mg/kg	me/kg	me/ke	18
EQL	The second secon	10.0	10.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01 0.0	0.01 0.01	0.0 0.01	1 0.01	1 0.01	0.01	0.02	0.01	0.01		0.01	100	0.01	0.01	0.01	0.01	100	10.0	0.01	100	100	
NSW OE	NSW OEH and NSW Health - HIL A	1								-	-	0	0.1	-		-																	
HE-AC	Hit. A Calculated - plant uptake pathway removed				The same									100											Section 1	1000			1				
Fleid ID	Field ID Sample Depth Range Sampled Date-Time																																
BH1	0.05-0.15 22-09-2017	10.05	40.04	1000	-0 0s	40.05	1000	40.00	4000	40.00 A	1000	000	1000	1000	1000	1000	1000	1000	1000	40.00	1000	1000	20.00	1000	10.00	1000	100	-	1000	1000	1		
BH2			10.05	10.03	+	40.04	+	+	+-	+	+	+	+	+	+	+	+	+	+	000	1000	1000	1000	1000	1000	1000	1000		1000	4000	20,01	1000	1000
BH3		+	1000	1000	+	+	+	+	+	+	+	+	1 2	+	+	+	+	+	+	40.01	+	1000	LOUS.	4000	10,00	1000	1000	100	0.02	4000	1000	100	<0.01
BH4				1000	+	+	+-	+	+	+	+	+	+	100	4	+	-	+	1000	1000	+	1000	1000	1002	40.07	10.05	1005	1000	0.02	ind>	50,001	40,01	40.01
BHS				10.05	+	+	+-	-	+	+	+	+	+	+	+	-	+	+	1000	000	+	10.03	10.0	1005	10.00	10.01	10.05	40.01	0.02	1000	0000	10.02	1000
ВНЕ		-	1000	1000	+	1.	+	+	+	+	+	+	+	+	+	+	-	+	+	1000	1000	1000	1000	1000	1000	2000	1000	1000	700	1000	10.07	1000	10.03
BH7		<0.01		<0.01	+	+	+-	+	+	+	+	+	+-	+	+	+-	+-	+-	+	+	+	+	+	1000	000	40.04		1000	2000	1000	10/01	10001	1000
DAS CAS	0.0-0.2 22-09-2017	10.05	10.05 10.05	1000	10.03		-	-	-	_	1			-	1	1	1	-	10.01	-	+-+	-	\rightarrow	40.03	+0.01	10.05	\rightarrow	10.05	+	\cdot	10.00	10.00	1000
BHB	0.02-0.2	10.000	40.01	3 4	40.00	MA 4000	88-04	M.A.	N.A.	16.A. <0	c00002	0.22	0.0045 -0.00	001 N.A.	40,0002	02 MA.	NA.	N. 50.00	40,000	N.A.	0.002	0.04	X X	HA.	N.A.	N.A.	N.A.	N.A.	N.A.	0.005	90000	9,0002	N.A.
8H9	0.02-0.2 22-09-2017		10'02	1002	10.0%	10.00	+	-	+	+	+	-	+	+	+	+	+	+	+	4004	+	0.00	980	1000	40.04	900	+		2000	1000	1000	1000	20.04
BH10	0.1-0.2 22-09-2017	<0.01	10.03	*D.01	+0.01	40'0°	10.01	10.0>	<0.00	<0.01	<0.00 c	0.52 <0	40.01 40.01	10.0> 10.01	10,03	10,031	1 <0.01	-	-	100	-	c0.01	90.0	10.01	10.05	90.0	-D.01		0.02	40.01	10.05	10.07	c0.01
Statistical	Statistical Summary																																
Number o	Number of Results	12	12	12	12	11	12	11	11	=	H	11	12 12	2 11	12	11	11	11	12	=	12	12	=	=	=	=	=	1	=	13	12	10	:
Number of	Number of Detects	0	0	0	0	0	1	0	0	H	0	H	H	H	H	H	0	2	0	-	-	2	3	0	-		0	-	a	-	0	0	0
Minimum	Minimum Concentration	<0.0005 <0.0005	<0.0005	<0.0005	<0.0005	<0.01	8E-04	-0.01	<0.01	=	<0.0002 <	**	0.005 <0.001	V	8	Ó	V	A	8	2 <0.01	0	<0.01	<0.01	<0.01	10:00	10:0>	1.	<0.01	l.	150	90	<0.0002	<0.01
Minimum Detect	Detect	QN	QN	QN	QN	QN	8E-04	QN	QN	QN	QN	0.02 0.0	ON 5000	QN Q	QN	ON	QN	-	QN	0.01	0.002	0.02	0.03	QN	0.02	0.02	QN	0.01	+	0.005	ON	Q	+
Maximum	Maximum Concentration		<0.01	<0.01		<0.01	-	-	-	<0.01		0.52 <0	<0.01 <0.01	10.0> 10.	ľ	1 <0.01	₽÷	0.02	<0.01	0.01	<0.01	0.04	0.05	<0.01	0.02	90.0	<0.01	0.01	0.02	<0.05	c0.01	<0.01	ta
Maximum Detect	Detect	QN	QN	QN			8E-04				-	0.52 0.0	ON 2000	-	-	QN	QN	+	QN	0.01	0.002	0.04	0.05	QN	0.02	90.0	QN	0.01	+		QN	QN	+-
Average C	Average Concentration	0.0046 0.0046	0.0046	0.0046	0.0046	0.005			0.005 0	0.005 0.0	0.0046 0	0.17 0.0	0.005 0.005		0.0046	90000	1	-	0.0046	-	-	600.0	-	0	9000	0.016	t a	+=	+-		0.0046	0.0046	140
Median C.	Median Concentration	0.005 0.005	0.005	0.005	-	5	1.4	9	2	0.005 0	-	0.08 0.0	0.005 0.005	9000 500		5 0.005	8 0.005		0.005	0.005	0.005	900'0	0.005		0.005	0.005	0.005		-				0.005 0.326
Standard	Standard Deviation	0.0014 0.0014	0.0014	0.0014	0.0014		0.001	0	0	0	0.0014 0	-	16-04 0.001	0 10	0.0014	0	0	0.004	0.0014	0.002	1E-03	0.011	0.019	0	0.005	0.022	0		+		-	+-	
Number	Number of Guideline Exceedances	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number	Number of Guideline Exceedances(Detects Only)	0	0	0	0	0	0	0	0	0			0	0	-	0			4	4	4		0				ŀ			i	i		İ
														ł	ł	1	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

				atenoriqlumenate	asenodqlussamolasoso	estenofius semolestoro	asenoridius amoiase	ri-heptadecafluorooctane namide	-heptadecafluorooctane fonethanol	hyl-heptadecafluorooctane	haritoorooctane hyl-heptadecalluorooctane	bise sionenonoso	atenotius anstoono	thyl perfluorootane (32019M) loned3eobime	bioA sionetsooro	orobutanoic acid	orobutane suffonate	orodecanoic acid	atenolius anababono	oro-1-dodecanesulfonate	orododecanoic acid		etenoliusenstged-1-oron	oroheptanoic acid	ocoperanoic acid	oro-n-hexadecanoic acid	atenotius anexadoros	osrohexylphosphonic acid	orooctadecanolc Acid	bise pinorqueorquistocoror	soroctane sulfonamide		oropentanolc acid	oropentanolc acid	
				70:5 EI	nl3 Z-b	n14 Z-9	uli 2:8		N-Ethy	1∌W-N	19M-N			N-Met	Perflu													$\overline{}$				_		Pèdli.	\rightarrow
			-	mg/kg mg	ķ	me/kg	mg/kg	-	z mg/kg	E S	fkg mg/kg	kg mg/kg	Bx/Bw	mg/kg m	mg/kg m	mg/kg m	mg/kg m	mg/kg mg	mg/kg mg	mg/kg mg/kg	Ng mg/kg		mg/kg mg/kg	AKE MEN'KE	/kg mg/kg	kg mg/kg	kg mg/kg	kg mg/kg	kg mg/kg	kg mg/kg	kg mg/kg			SI	-
3				0.02	2		0.02	-	0.02	0.02	╌	0.02	0.02	0.02	0.02	0.02 0	0.02	0.02 0	0.02 0.0	0.02 0.04	0.02		0.02 0.02	02 0.02	02 0.02	2 0.02	20.02	2 0.02	20.02	2 0.02	2 0.02	2 0.02			0.02 0.02
400	0003	22	22-09-2017 40.02	40.02	<0.02	00.05	<0.02	<0.02	-0.02	20.02	0.00	20,02 40,02	0.74	<0.05	<0.02	<0.02 ×	<0.02	40,02 «C	40.00 AG	<0.02 <0.04	04 40.02		<0.02 <0.0	<0.02 <0.02	90.0	6 <0.02	10.02	25 0.02	40,00	20.02	20.00	2 <0.00			<0.02 <0.02
, , ,	0000	23	22-09-2017 -0.02	20.00	<0.02	<0.02	20.00	c0.02	<0.02	2 40,02	C <0.02	20.05 2	0.34	+0.02	<0.02	40.02 ×	c0.05	-0.02 H	<0.00 <0	<0.05 ×0.04	9	8	40.02 40	<0.02 <0.03	.02 <0.02	20.02	02 c0.02	20.02	00 40 02	02 c0.02	0.02	2 0002	20.022 S		22 <0.02
	W Oda			N.A.	4 2	NA	N.A.	N.A.	N.A.	MA.	N.A.	NA.	44%	N.A.	N.A.	N.A.	N.A.	N.A. R	N.A. N	NA NA	A. NA		NA. H.	HA. NA.	A. N.A.	A. N.A.	A. NA.	A. NA	A. N.A.	E RA	**0	N.A.	N.A.		L NA
1			22-09-2017 <0.00	50.05	¢0.02	<0.02	<0.02	40,02	4000	c0.02	0.02	<0.02	0.74	<0.00	<0.02	<0.02	<0.02	<0.02	*0.00 ×0	<0.02 <0.04		<0.02 <0.03	<0.02 <0.0>	c0.02 <0	000 20	6 <0,02	50.02	0.02	40.02	02 40.02	0.02	2 <0.02	c0,02		2 <0.02
DA7	0003	22	22-09-2017 H.A.	NA	M.A.	NA	NA	N.A.	N.A.	MA	HA	<0.0002	0.322	0.0006	0.0045	100.00	N.A. O	<0.0002 N	N.A. N	NA. NA.	A. 10,000	774	N.A. N.	N.A. 0.007	016 0.0402	102 N.A.	A. 0.004	34 N.A.	A. N.A.	K. NA.	K NA	0.0054	24 <0.000	0.1	6 <0.00002
7	*****			1	1	1	1	1	1	MA	40	4.4	7697	At A	7 0	41 4.	B1 A	N T N	NAM	A N A N	H	N. A. 30	N A M	N A M	A. 25%	N. N. A.	A.N.A.	S. N.	ANA	A. N.A.	A NA	NA	N.A.		N.A.

PFOS Soil Assessment B22 S97 Charnwood

		-					_										P	erfluoron	nated Su	factants																
			10:2 Fluorotelomersulphonate	4.2 Fluorotelomersulphonate	5-2 Fluorotelomer Sulfonate	3:2 Fluorotelomersulphonate	V-Ethyl-heptadecafluorooctane ulphonamide	erfluorooctane sulfonamide FOSA)	4-Ethyl-heptadecafluorooctane ulphonamidoethanol	4-Methyl-heptadecafluorooctane ulphonamide	-Methyl-heptadecafluorooctane ulphonamidoethanol	erfluorononanoic acid	erfluorooctane sulfonate	erfluorooctanoic Acid	erfluorobutanoic acid	erfluorobutane sulfonate	erfluorodecanoic acid	erfluorodecane sulfonate	PFDoS)	erfluorodecylphosphonic acid PFDPA)	erfluorododecanoic acid	erfluoro-1-heptanesulfonate PFHpS)	erfluoroheptanok acid	erfluorohexanoic acid	erfluorohexylphosphonic acid	erfluoro-n-hexadecanoic acid	erfluoro-1-nonanesulfonate FNS)	arfluorohexane sulfonate	erfluorooctadecanok Acid	erfluorooctylphosphonic acid FOPA)	erfluoroctane sulfonamide	rfluoropentanoic acid	erfluorotetradecanoic acid	erfluorotridecanoic acid	rfluoroundecanoic acid	of PFOS and PFHxS
											2 0	0.	0,	6	6.	Δ.	0.	G.									6 5	- 6	- 6	6 5	6		6	6	2	1 5
_			mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k
EQL			mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01		mg/kg 0.01		mg/kg 0.01		mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.02	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg 0.01	mg/kg	mg/kg 0.01	mg/kg 0.01	mg/k
BH7		9-2017	0.01 <0.01							0.01		0.01										mg/kg 0.01 40.01				mg/kg 0.01		mg/kg 0.01		mg/kg 0.01						
-			0.01 <0.01	0.01	0.01	0.01	0.01		0.01	0.01	0.01	0.01 40.01	0.01		0.01	0.01	0.01	0.01	0.01		0.01	0.01		0.01		0.01 <0.01	0.01	mg/kg 0.01 <0.01		mg/kg 0.01 <0.01	0.01	0.01		0.01		0.01
BH7		9-2017	0.01 <0.01	0.01 <0.01	0.01 <0.01	0.01 <0.01	0.01		0.01	0.01 <0.01	0.01 <0.01	0.01 40.01	0.01		0.01	0.01	0.01	<0.01	0.01 <0.01		0.01 <0.01	0.01		0.01 <0.01	0.01 <0.01	0.01 <0.01	0.01	mg/kg 0.01 <0.01 <0.01 N.A.		mg/kg 0.01 <0.01 <0.01 N.A.	0.01 0.02 0.02	0.01		0.01		0.74
BH7	0.0-0.2 22-4 RPD %	9-2017	0.01 <0.01 <0.01 N.A.	0.01 <0.01 <0.01	0.01 <0.01	0.01 <0.01 +0.01	0.01 <0.01 <0.01	0.01 <0.01 <0.01	0.01 <0.01 <0.01	0.01 <0.01	0.01 <0.01	0.01 <0.01 <0.01 N.A	0.01		0.01	0.01	0.01	<0.01	0.01 <0.01 <0.01		0.01 <0.01 <0.01 N.A.	0.01 <0.01 <0.01 N.A.	0.01 <0.01 <0.01 N.A.	0.01 <0.01 c0.01 N,A,	0.01 <0.01	0.01 <0.01	0.01 0.02 <0.01 N.A	0.01 40.01 40.01	0.01 <0.01 <0.01	mg/kg 0.01 <0.01 <0.01 N.A.	0.01 0.02 0.02 0%	0.01 <0.01 <0.01 N.A.	0.01 <0.01 <0.01 N.A.	0.01		0.01 0.74 0.34 44%
BH7 QA1	0.0-0.2 22-4 RPD % 0.0-0.2 22-4	9-2017 9-2017 9-2017	0.01 <0.01 <0.01 N.A. <0.01	0.01 <0.01 <0.01 N.A. <0.01	0.01 <0.01 <0.01 N.A.	0.01 <0.01 <0.01 N.A. 40.01	0.01 <0.01 <0.01 N.A. <0.01	0.01 <0.01 <0.01 N.A. <0.01	0.01 <0.01 00.01 N.A. <0.01	0.01 <0.01 <0.01 N.A.	0.01 <0.01	0.01 <0.01 <0.01 N.A <0.01	0.01 0.50 0.30 31% 0.50		0.01 <0.01 <0.01 N.A. <0.01	0.01 <0.01 <0.01 N.A. <0.01	0.01	0.01 <0.01 <0.01 N.A.	0.01 <0.01 0.01 N.A.	0.02 <0.02 <0.00 N.A <0.02	0.01 <0.01 <0.01	0.01 <0.01 <0.01 N.A. <0.01	0.01 <0.01 <0.01	0.01 <0.01 <0.01 N,A, <0.01	0.01 <0.01	0.01 <0.01	0.01 0.02 <0.01	0.01 40.01 40.01	0.01 <0.01 <0.01	mg/kg 0.01 <0.01 <0.01 N.A. <0.01 N.A.	0.01 0.02 0.02	0.01	0.01 <0.01 <0.01 N.A. 40.01	0.01		0.74

SOIL PFAS INVESTIGATION - 172678

APPENDIX E

NEPM Toolbox Calculator for HILs

Derivation of Investigation Levels HIL A - Low Density Residential

Summary of Exposure Param	eters	Abbreviation	units	Parameter	References/Notes
Soil and Dust Ingestion Rate	 Young children (0-5 years) 	IR _{sc}	mg/day	100	Schedule B7, Table 5
oon and oast Ingestion rate	- Adults	IR _{SA}	mg/day	50	Schedule B7, Table 5
Surface Area of Skin	- Young children (0-5 years)	SA _c	cm²/day	2700	Schedule B7, Table 5
Surface Area of Skill	- Adults	SA	cm²/day	6300	Schedule B7, Table 5
Soil-to-Skin Adherence Factor		AF	mg/cm²/day	0.5	Schedule B7, Table 5
Time Spent Outdoors		ETO	hours	4	Schedule B7, Table 5
Time Spent Indoors		ETI	hours	20	Schedule B7, Table 5
Lung Retention Factor		RF		0.375	Schedule B7, Table 5
Particulate Emission Factor		PEFo	(m³/kg)	2.9E+10	Calculated for scenario, refer to Equations 19 and 20 and assumptions in Schedule B7
Indoor Air Dust Factor	1002 7100 E-1	PEFi	(m³/kg)	2.6F+07	As per Equation 21 based assumptions presented in Schedule B7
Fraction of indoor dust comprise	d of outdoor soil	TF	-	0.5	Assume 50% soil concentration present in dust as noted in Schedule 87
Indoor Air-to-Soil Gas Attenuati	on Factor	α		0.1	Assume 50% soil concentration present in dust as noted in Schedule 87 Value adopted as discussed in Section 5,5 of Schedule 87
Body weight	- Young children (0-5 years)	BW _c	kg	15	Schedule B7, Table 5
	- Adults	BW _A	kg	70	Schedule B7, Table 5
Exposure Frequency		EF	days/year	365	Schedule B7, Table 5
Exposure Duration	- Young children (0-5 years)	ED _c	years	6	Schedule B7, Table 5
Exposure Duration	- Adults	ED _A	years	29	Schedule B7, Table 5
Averaging Time (non-carcinoger	nic)	AT _T	days	ED*365	Calculated based on ED for each relevant age group, multiplied by 24 hours for the assessment of inhalation exposures
Averaging Time (carcinogenic)		AT _{NT}	days		Based on lifetime of 70 years, multiplied by 24 hours for the assessment of inhalation exposures

Compound	Toxicity Reference Value Oral (TRV _o) (mg/kg/day)	Absorption (GAF) (unitless)	Toxicity Reference Value Dermai (TRV _D) (mg/kg/day)		Factor (DAF)	(BI _o) (% of TDI)	Reference	Intake Inhalation (BII) (% of		Plant Uptake	Plant Uptake Factor (Incl % Intake) Children (kg/day) (eqn 16)	Pathway Specific HILs (mg/kg)			Derived Soll HIL (to 1	HIL	Pathways Included		Notes	
									Inta	Intake) Adults		Ingestion	Home- grown produce (eqn 15)	Dermal (eqn 6)	Dust (eqn 9)	or 2 s.f.) (mg/kg)		Plant Uptake	Dermal Absorption	
OS/PFHxS	0.00002	1	0.00002	100%	0.005	80%	0.00014	0%				6.0F-01	0.0E+00	8.9E+00	2.3E+04	1.0	5.6E-01			

Stedman, Andrew (Health)

From:

Hudson, Lyndell (Health)

Sent:

Tuesday, 24 October 2017 2:17 PM

To:

Farrant, Adrian (Health) Stedman, Andrew (Health)

Cc: Subject:

FW: Referral-Health-Development Application - 201731430-22-97-Charnwood-01

[SEC=UNCLASSIFIED]

Follow Up Flag:

Follow up

Flag Status:

Flagged

Hi Adrian

Can you please see Andrew about this one ©

Thanks

Lyndell Hudson | Manager Environmental Health Health Protection Service | health.act.gov.au Phone (02) 6205 0956 | Mobile

From: Stedman, Andrew (Health)

Sent: Tuesday, 24 October 2017 10:35 AM

To: Hudson, Lyndell (Health) < Lyndell. Hudson@act.gov.au>

Subject: FW: Referral-Health-Development Application - 201731430-22-97-Charnwood-01 [SEC=UNCLASSIFIED]

Hi Lyndell,

We may need Adrian's help on assessing the suitability of this.

Thanks

Andrew Stedman | Public Health Officer | Environment Team Leader

Phone: 02 6205 4404 | Mobile: | Email: andrew.stedman@act.gov.au

Health Protection Service | Population Health Protection and Prevention | ACT Health | ACT Government

25 Mulley Street, Holder ACT 2611 | health.act.gov.au/hps

IMPORTANT: This email, and any attachments, may be confidential and also privileged. If you are not the intended recipient, please notify the sender and delete all copies of this transmission along with any attachments immediately. You should not copy or use it for any purpose, nor disclose its contents to any other person

From: Rogers, Keith (Health)

Sent: Monday, 23 October 2017 4:12 PM

To: Stedman, Andrew (Health) < Andrew. Stedman@act.gov.au >

Cc: Bvirakare, Faith (Health) < Faith.Bvirakare@act.gov.au >; Durant, Sam (Health) < Sam.Durant@act.gov.au > Subject: FW: Referral-Health-Development Application - 201731430-22-97-Charnwood-01 [SEC=UNCLASSIFIED]

Hi Andrew,

This email will require a response from the ED regarding the PFAS/Charnwood Child care centre DA.

The report submitted is in response to the condition placed on the NOD which means the proponent cannot move forward without our support.

Adrian Farrant was involved and verified the calculations, and I believe the response went through Rad, Vojkan, Vanessa and Brett before Conrad.

Let me know if you need any information or assistance with the response.

Regards,

Keith Rogers | Senior Public Health Officer

Phone: 02 6205 1716 | Mobile: Email: keith.rogers@act.gov.au

Health Protection Service | Population Health Protection and Prevention | ACT Health | ACT Government

25 Mulley Street, Holder ACT 2611 | health.act.gov.au/hps

From: Ryan Stewart [mailto: @arcadis.com]

Sent: Monday, 23 October 2017 3:59 PM

To: Rogers, Keith (Health) < Keith.Rogers@act.gov.au>

Subject: FW: Referral-Health-Development Application - 201731430-22-97-Charnwood-01

Amended with title.

Afternoon Keith,

Arcadis is seeking endorsement of the report titled 'SOIL PFAS INVESTIGATION - 172678, Block 22 Section 97, Charnwood ACT from the Health Protection Service (HPS).

This report can be downloaded from the link provided:

https://spaces.hightail.com/space/0Ec4ser0mp

This report is related to the development application 201731430.

Please contact myself if you have any questions.

Regards,

@arcadis.com

| BSc Environment & Sustainability |

Arcadis | Unit 5/9 Beaconsfield Street, Fyshwick Canberra | ACT 2609 | Australia T. + 61 2 6280 9898 | M. + 61

www.arcadis.com/au

Be green, leave it on the screen.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

MINUTE

SUBJECT: Development Application 201731430-22-97-CHARNWOOD-03 – Applicant response

To:

Conrad Barr, Executive Director Health Protection Service

From:

Lyndell Hudson, Manager Environmental Health

Date:

November 2017

Purpose

To provide you with a response to the applicant of DA 201731430 following a request by the applicant to endorse an Arcadis Design and Consulting report titled 'Soil PFAS Investigation - 172678, Block 22 Section 97, Charnwood ACT'.

Background

- The HPS has been requested to endorse a report titled 'Soil PFAS Investigation -172678, Block 22 Section 97, Charnwood ACT' in relation to development application (DA) 201731430.
- 2. DA 201731430 proposes:
 - a. demolition of an existing building on the site of a former Fire Brigade Depot
 - b. construction of a single storey, 1217 square meter childcare centre (with a proposed capacity of 120 childcare places)
 - c. construction of 1157 square meter playground, site works and fencing.
- 3. The site is located within the CZF Community Facility Zone Block 22 Section 97, Charnwood, with an approximate land area of 3601 square meters.
- 4. The HPS provided comments to the Environment and Planning Directorate (EPD) regarding DA 201731430 on 24 July 2017. The HPS identified potential exposure of sensitive receptors (children) to Per and Polyfluorinated alkyl Substances (PFAS) chemicals (PFAS includes: perfluorooctane sulphonate (PFOS) and perfluorooctanoic acid (PFOA)) within soil at the site.
- 5. Young children are particularly at risk for increased exposure to soil contaminants, such PFAS from pica (eating soil), greater hand-to-mouth activity (including crawling) and reduced hygiene (i.e. washing of hands).
- The HPS requested the applicant undertake further investigative sampling and propose measures to mitigate potential exposure to PFAS. The minute to ED HPS detailing health concerns and the formal comments provided to EPD are at <u>Attachment 1</u>.

- 7. EPD approved DA 201731430 subject to the condition that HPS comments were addressed by the applicant. EPD's Notice of Decision is at <u>Attachment 2</u>. EPD advised the applicant that plans would not be released until HPS confirms support of the proposed development.
- 8. The applicant undertook the report titled 'Soil PFAS Investigation -172678, Block 22 Section 97, Charnwood ACT' in response to the EPD condition that they address HPS comments.

Issues

- 9. HPS has reviewed the report and is satisfied the sampling program undertaken was completed as requested. The sample program found soil PFAS concentrations lower than that contained within the Land Development Agency testing undertaken in 2015. The report has proposed a number of mitigation measures including: permanent barriers installed over soil; confirmatory site inspection and review of mitigation measures, with a report provided to ACT Health; soil to be contained on site unless EPA approval is obtained; and an Environment Management Plan (EMP) focusing on maintenance of the proposed mitigation measures and/or intrusive works at the site.
- 10. The applicant is advised that the HPS supports all mitigation measures proposed within the 'Soil PFAS Investigation -172678, Block 22 Section 97, Charnwood ACT' report undertaken by Arcadis Design and Consulting.
- 11. The applicant is advised that prior to HPS providing support for the proposed development, the applicant must provide to the HPS details of where each proposed mitigation barrier will be implemented across the site.
- 12. The HPS will also require an onsite inspection undertaken by HPS officers following the installation of the mitigation measures. This will be a condition of HPS support for the development.

Recommendation

13. It is recommended that you sign the letter at Attachment 3 to the applicant.

AGREEDXNOT AGREED/NOTED/PLEASE DISCUSS

Conrad Barr Executive Director, Health Protection Service

November 2017

Lyndell Hudson

Manager Environmental Health

7 November 2017

Action Officer:

Andrew Stedman

Extension:

54404

EPDcustomerservices@act.gov.au

Referral-Health-Development Application – 201731430-22-97-CHARNWOOD-01

Dear Sir/Madam,

Thank you for the documentation received on 3 July 2017 regarding a proposed childcare centre in Charnwood.

The Health Protection Service (HPS) notes that the proposed development will include demolition of an existing building on the site of a former Fire Brigade Depot, construction of a single storey, 1217 square meter childcare centre, and construction of 1157 square meter playground, site works and fencing.

Results obtained through the Land Development Agency indicate perfluorooctane sulphonate (PFOS) contamination in three soil samples tested 2015 at levels of between 1.06mg/kg and 1.92mg/kg.

Young children are particularly at risk for increased exposure to soil contaminants, such as PFOS and PFOA from pica (eating soil), greater hand-to-mouth activity (including crawling) and reduced hygiene (i.e. washing of hands). Assessment of the health risk to children of soil contamination at this site was undertaken using the 'Health Based Guidance Values for PFAS — For Use in Site Investigations in Australia,' recently released by the Australian Government Department of Health. These outline a PFOS tolerance value of 20ng/kg/day.

Preliminary calculations suggest a 10kg child (assuming a two year old) would exceed the PFOS tolerable daily intake by consuming just 100mg of soil from the site. A 2006 study conducted in the United States of America found that children aged between two and six years of age consume an average of 138mg/day of soil, or 193mg/day of soil and dust.

The applicant is advised that additional sampling must be undertaken to provide a more complete and up-to-date assessment of the site, focusing on areas likely to be exposed (including playgrounds and landscaped areas). The results and a map indicating sample sites must be provided to the HPS.

HPS requires that the applicant demonstrate suitable mitigation measures to eliminate the exposure of PFOS to vulnerable populations.

There are no other public health concerns in relation to the proposed development.

Please contact Keith Rogers on (02) 6205 1716 if you require any further information.

Yours sincerely

Conrad Barr

Executive Director

Health Protection Service

W July 2017

SUBJECT: Development Application 201731430-22-97-CHARNWOOD-

03

To:

Conrad Barr, Executive Director Health Protection Service

From:

Radomir Krsteski, A/g Manager Environmental Health

Date:

July 2017

Purpose

To provide you with a response to Environment, Planning and Sustainable Development Directorate (EPSDD) following their request for comment regarding a development application for a proposed childcare centre in Charnwood.

Background

- 1. EPSDD has requested that comments are received by 24 July 2017.
- 2. The development application proposes:
 - a. demolition of an existing building on the site of a former Fire Brigade Depot
 - b. construction of a single storey, 1217 square meter childcare centre (with a proposed capacity of 120 childcare places)
 - c. construction of 1157 square meter playground, site works and fencing.
- 3. The site is located within the CZF Community Facility Zone Block 22 Section 97, Charnwood, with an approximate land area of 3601 square meters.
- 4. The Health Protection Service (HPS) responded to an initial development application on 2 June 2017. A copy of the response is at Attachment A. The HPS sought further information regarding the results of the perfluorooctane sulphonate (PFOS) and perfluorooctanoic acid (PFOA) analysis of soil.
- 5. A representative of the applicant contacted the HPS on Thursday 15 June 2017 by phone seeking clarification of the HPS request at <u>Attachment A.</u> An email response was provided to the representative on 15 June 2017. A copy is at <u>Attachment B.</u>
- 6. Information provided in this development application in response to HPS concerns advised that HPS should contact the Environmental Protection Agency or the Land Development Agency to obtain results of the testing. A copy of the results was obtained through the Land Development Agency (LDA), on 10 July 2017. A copy is at Attachment C.
- 7. The information provided by the LDA included a 2015 report undertaken by AECOM, an engineering consultant in Canberra that provided soil sample results for PFOS and PFOA at three sites in one 5m x 7m area at the periphery of the site (Attachment D). These

- results demonstrate the presence of PFOS in all three soil samples tested at levels of 1.06mg/kg, 1.30mg/kg and 1.92mg/kg.
- 8. AECOM concluded that these levels were below the USA EPA Region 4 (2009) Soil Screening Levels for PFOS and PFOA Memorandum of 6mg/kg and therefore determined that the site is acceptable for future child care land use.
- 9. The USA EPA Memorandum noted the inherent uncertainties in the degree of protectiveness afforded by the listed screening levels and the document has since been archived by the US EPA.
- 10. Further, in April 2017, the Australian Government Department of Health published Health Based Guidance Values for PFAS For Use in Site Investigations in Australia which outlines a PFOS tolerable daily intake value of 20ng/kg/day (Attachment E).
- 11. Young children are particularly at risk for increased exposure to soil contaminants, such as PFOS and PFOA from pica (eating soil), greater hand-to-mouth activity (including crawling) and reduced hygiene (i.e. washing of hands).
- 12. Preliminary calculations suggest a 10kg child (assuming a two year old) would exceed the PFOS daily tolerance level by consuming just 100mg of soil from the site. A 2006 study conducted in the United States of America found that children aged between 2 and 6 years of age may have an average soil ingestion of 138mg/day of soil, or 193mg/day of soil and dust (Attachment F).

Issues

- 13. The applicant is advised that additional sampling for PFOS and PFOA must be undertaken to provide a more complete and up-to-date assessment of the site, focusing on areas where children are likely to be exposed to surface soils (including playgrounds and landscaped areas). The results and a map indicating sample sites must be provided to the HPS.
- 14. The HPS requires that the applicant demonstrate suitable mitigation measures to minimise or eliminate the potential ingestion of PFOS and PFOA by children, who are the most sensitive land use receptors considered in this application.
- 15. There are no other public health concerns in relation to the proposed development.

Recommendation

16. It is recommended that you sign the letter at $\underline{\text{Attachment G}}$ to EPD.

AGREED/NOT AGREED/NOTED/PLEASE DISCUSS

Conrad Barr Executive Director, Health Protection Service July 2017

Radomir Krsteski A/g Manager, Environmental Health July 2017

Action Officer: Keith Rogers

Extension:

51716

Stedman, Andrew (Health)

From:

Rogers, Keith (Health)

Sent:

Monday, 23 October 2017 4:12 PM

To:

Stedman, Andrew (Health)

Cc:

Byirakare, Faith (Health); Durant, Sam (Health)

Subject:

FW: Referral-Health-Development Application - 201731430-22-97-Charnwood-01

[SEC=UNCLASSIFIED]

Follow Up Flag:

Follow up

Flag Status:

Flagged

Hi Andrew,

This email will require a response from the ED regarding the PFAS/Charnwood Child care centre DA.

The report submitted is in response to the condition placed on the NOD which means the proponent cannot move forward without our support.

' 'rian Farrant was involved and verified the calculations, and I believe the response went through Rad, Vojkan,

Let me know if you need any information or assistance with the response.

Regards,

Keith Rogers | Senior Public Health Officer

Phone: 02 6205 1716 | Mobile: Email: keith.rogers@act.gov.au

Health Protection Service | Population Health Protection and Prevention | ACT Health | ACT Government

25 Mulley Street, Holder ACT 2611 | health.act.gov.au/hps

From: Ryan Stewart [mailto: @arcadis.com]

Sent: Monday, 23 October 2017 3:59 PM

To: Rogers, Keith (Health) < Keith.Rogers@act.gov.au>

Subject: FW: Referral-Health-Development Application - 201731430-22-97-Charnwood-01

Amended with title.

Afternoon Keith,

Arcadis is seeking endorsement of the report titled 'SOIL PFAS INVESTIGATION – 172678, Block 22 Section 97, Charnwood ACT 'from the Health Protection Service (HPS).

This report can be downloaded from the link provided:

https://spaces.hightail.com/space/0Ec4ser0mp

This report is related to the development application 201731430.

Please contact myself if you have any questions.

Regards,

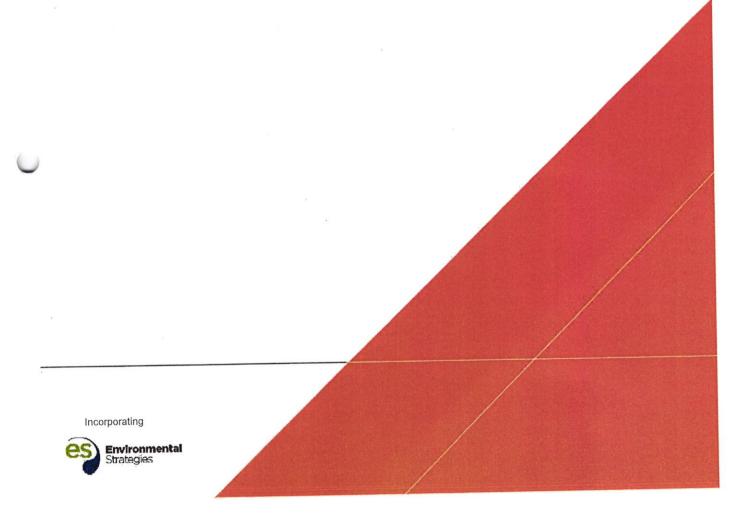
| BSc Environment & Sustainability |

ryan.stewart@arcadis.com

Arcadis | Unit 5/9 Beaconsfield Street, Fyshwick Canberra | ACT 2609 | Australia

T. + 61 2 6280 9898 | M.

Be green, leave it on the screen.

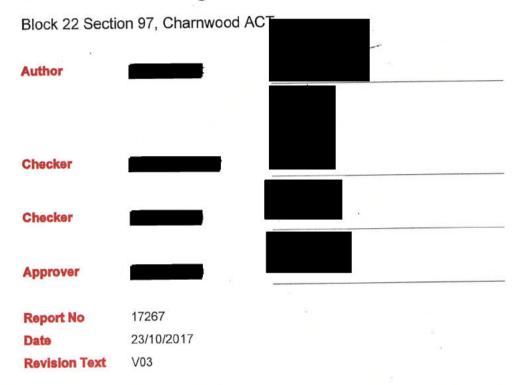

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

SOIL PFAS INVESTIGATION - 172678

Block 22 Section 97, Charnwood ACT

23 OCTOBER 2017

CONTACT



Arcadis

Unit 5, 9 Beaconsfield St Fyshwick, ACT

PEACH AND CO 17267

Soil PFAS Investigation

This report has been prepared for Peach and Co Pty Ltd in accordance with the terms and conditions of appointment for P17594 dated 21/08/2017. Arcadis Australia Pacific Pty Limited (ABN 76 104 485 289) cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

REVISIONS

Revision	Date	Description	Prepared by	Approved by
V01	19/10/2017	Draft	RPS & VL	CG
V02	20/10/2017	Draft for client review	RPS	CG
V03	23/10/2017	Final	RPS	CG

CONTENTS

EXECUTIVE SUMMARY1	
1 INTRODUCTION3	
1.1 Background3	
1.2 Objective4	
1.3 Scope of Works4	
1.4 Limitations5	
2 SITE CHARACTERISTICS AND SITE HISTORY6	
2.1 Site Location6	
2.2 Site Description6	
2.3 Surrounding Land Uses6	
2.4 Sensitive Environments7	
2.5 Proposed Land Use7	
3 PREVIOUS INVESTIGATIONS8	
3.1 AECOM 2014, Stage 1 Environmental Assessment – JACSD, Charnwood, 18th November 2014 (AECOM 201	4A)
3.2 AECOM 2014, Remedial Action Plan, Former West Belconnen Fire Station, 3rd March 2017 (AECOM 2014B).	
3.3 AECOM 2014, UPSS Validation Report – Former West Belconnen Fire Station, Belconnen, ACT, 18th November 2014 (AECOM 2014C)10	
November 2014 (AECOM 2014C)	:h
March 2015 (AECOM 2015A)11	
3.5 AECOM 2015, Excavated Soils - Block 6, Section 97, Former West Belconnen Fire Station, Charnwood, ACT Validation Letter, 30th April 2015 (AECOM 2015B)	
3 6 AECOM 2015, Block6, Section 97 Charnwood, ACT - Summary of Previous Investigations and Site Suitabil	ity
Status, 17th July 2015 (AECOM 2015C)13	
4 SITE CONDITION AND ENVIRONMENTAL SETTING15	
4.1 Topography15	
4.2 Soils and Geology15	
15	
4.3 Hydrogeology	
4.3 Hydrogeology	
4.4 Hydrology	
4.4 Hydrology16	
4.4 Hydrology 16 4.5 Visible Signs of Contamination 16 4.6 Odours 16 5 AREAS OF ENVIRONMENTAL CONCERN 17	
4.4 Hydrology	
4.4 Hydrology	
4.4 Hydrology	
4.4 Hydrology 16 4.5 Visible Signs of Contamination 16 4.6 Odours 16 5 AREAS OF ENVIRONMENTAL CONCERN 17 5.1 AEC 1 - Three (3) USTs 17 5.2 AEC 2 and 4 - Car Wrecks and Uncontrolled Fill 17 5.3 AEC 3 - AFFF 18 5.4 AEC 5 - Onsite septic tanks and/or septic lines 19	
4.4 Hydrology 16 4.5 Visible Signs of Contamination 16 4.6 Odours 16 5 AREAS OF ENVIRONMENTAL CONCERN 17 5.1 AEC 1 - Three (3) USTs 17 5.2 AEC 2 and 4 - Car Wrecks and Uncontrolled Fill 17 5.3 AEC 3 - AFFF 18 5.4 AEC 5 - Onsite septic tanks and/or septic lines 19 5.5 Contaminants of Potential Concern 19	
4.4 Hydrology 16 4.5 Visible Signs of Contamination 16 4.6 Odours 16 5 AREAS OF ENVIRONMENTAL CONCERN 17 5.1 AEC 1 - Three (3) USTs 17 5.2 AEC 2 and 4 - Car Wrecks and Uncontrolled Fill. 17 5.3 AEC 3 - AFFF 18 5.4 AEC 5 - Onsite septic tanks and/or septic lines 19 5.5 Contaminants of Potential Concern 19 6 DATA QUALITY OBJECTIVES AND SAMPLING AND ANAYSIS PLAN 20	
4.4 Hydrology 16 4.5 Visible Signs of Contamination 16 4.6 Odours 16 5 AREAS OF ENVIRONMENTAL CONCERN 17 5.1 AEC 1 - Three (3) USTs 17 5.2 AEC 2 and 4 - Car Wrecks and Uncontrolled Fill 17 5.3 AEC 3 - AFFF 18 5.4 AEC 5 - Onsite septic tanks and/or septic lines 19 5.5 Contaminants of Potential Concern 19 6 DATA QUALITY OBJECTIVES AND SAMPLING AND ANAYSIS PLAN 20 6.1 Data Quality Objectives (DQO) 20	
4.4 Hydrology 16 4.5 Visible Signs of Contamination 16 4.6 Odours 16 5 AREAS OF ENVIRONMENTAL CONCERN 17 5.1 AEC 1 - Three (3) USTs 17 5.2 AEC 2 and 4 - Car Wrecks and Uncontrolled Fill. 17 5.3 AEC 3 - AFFF 18 5.4 AEC 5 - Onsite septic tanks and/or septic lines 19 5.5 Contaminants of Potential Concern 19 6 DATA QUALITY OBJECTIVES AND SAMPLING AND ANAYSIS PLAN 20	

SOIL PFAS INVESTIGATION - 172678

	7 METHODS	. 24
	7.1 Soil Logging	
	7.2 Laboratory Analysis and Methods	. 24
	8 ASSESSMENT CRITERIA	. 26
	8.1 Rationale for Selection Soil Assessment Criteria	. 26
	9 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)	
	9.1 Field Quality Assurance	
	9.1.1 Details of Sampling Team	.27
	9.1.2 Decontamination Procedures Carried out Between Sampling Events	.27
	9.1.3 Chain of Custody Details	.27
	9.1.4 Sampling Splitting Techniques	.27
	9.1.5 Statement of Duplicate Frequency	.27
	9.2 Laboratory QA/QC	. 28
	9.2.1 Holding Times	.28
	9.2.2 Laboratory Accreditation and Analytical Methods Used	.28
	9.2.3 Percent Recoveries of Spikes and Duplicates	.28
	9.2.4 Standard solution results	.28
	9.2.5 Laboratory duplicate results	.28
	9.2.6 Laboratory blank results	.28
	9.2.7 PFAS Oxidation – Primary Samples	28
1	9.3 QA/QC Data Evaluation	29
	9.3.1 Evaluation of the QA/QC Information Compared to the DQOs	29
	9.3.2 Data Comparability	29
,	9.4 Relative Percentage Difference	30
	0 OBSERVATIONS AND ANALYTICAL RESULTS	
•	10.1 Field Observations	31
	10.1.1 Soil	31
•	0.2 Soil Analytical Results	31
	0.2.1 PFAS	31
	1 PRELIMINARY RISK ASSESSMENT	
	1.1 Summary of Soil Conditions	
	1.2 Assessment of Potential Transport Mechanisms	
	1.3 Assessment of Possible Exposure Routes and Receptors	
	1.4.1 Potential Receptors, Exposures, and Pathways	
	1.5 Proposed Mitigation Measures	
	2 CONCLUSIONS AND RECOMMENDATIONS	
	2.1 Conclusions	
	2.2 Perommendations	

APPENDICES

APPENDIX A

Site Figures

APPENDIX B

Borehole Logs.

APPENDIX C

Analytical Laboratory Reports

APPENDIX D

Tables Analytical Results

APPENDIX E

NEPM Toolbox Calculator for HILs

٧

EXECUTIVE SUMMARY

Arcadis Australia Pacific Pty Ltd (Arcadis) was commissioned by the Peach and Co Pty Ltd (Peach and Co) to complete a Soil per- and poly-fluoroalkyl substances (PFAS) Investigation at Block 22 Section 97 Charnwood ACT (herein referred to as the Site). It is understood that the site is intended to be redeveloped into a childcare facility.

A historical environmental investigation identified concentrations of PFAS within natural soils in the southern portion of the site. Due to the historical identification of PFAS at the site the ACT Health Directorate required further assessment and recommendations for any mitigation measures, focusing on areas in which children are likely to come in contact with soils (inclusive of playgrounds and landscaped areas).

The objective of this investigation was to assess the soil at the site for PFAS and assess the potential risk of PFAS to the proposed childcare centre.

Ten (10) boreholes were advanced across the site in order to assess soils for potential PFAS impacts.

Concentrations of PFOS and PFHxS (sum) exceeded the OEH residential HSL screening guidelines (0.009 mg/kg) for the following samples:

- BH1 0.05-0.15 at 0.02 mg/kg.
- BH3 0.0-0.1 at 0.06 mg/kg.
- BH6 0.0-0.2 at 0.04 mg/kg.
- BH7 0.0-0.2 at 0.74 mg/kg.
- QA1 (intra-lab duplicate for BH7 0.0-0.2) at 0.34 mg/kg.
- QA2 (inter-lab triplicate for BH7 0.0-0.2) at 0.326 mg/kg.
- BH10 0.1-0.2 at 0.9 mg/kg.

All locations were below the derived screening level of 1 mg/kg, assuming that home grown produce pathways are removed.

A preliminary risk assessment was performed and identified that with the proposed redevelopment plan, the soil ingestion exposure pathway for children is potentially complete.

Arcadis believes that the implementation of a barrier between the existing soil and occupants of the childcare centre will make the exposure pathway incomplete. The following permanent barriers will be acceptable for use to prevent exposure to soil on the site:

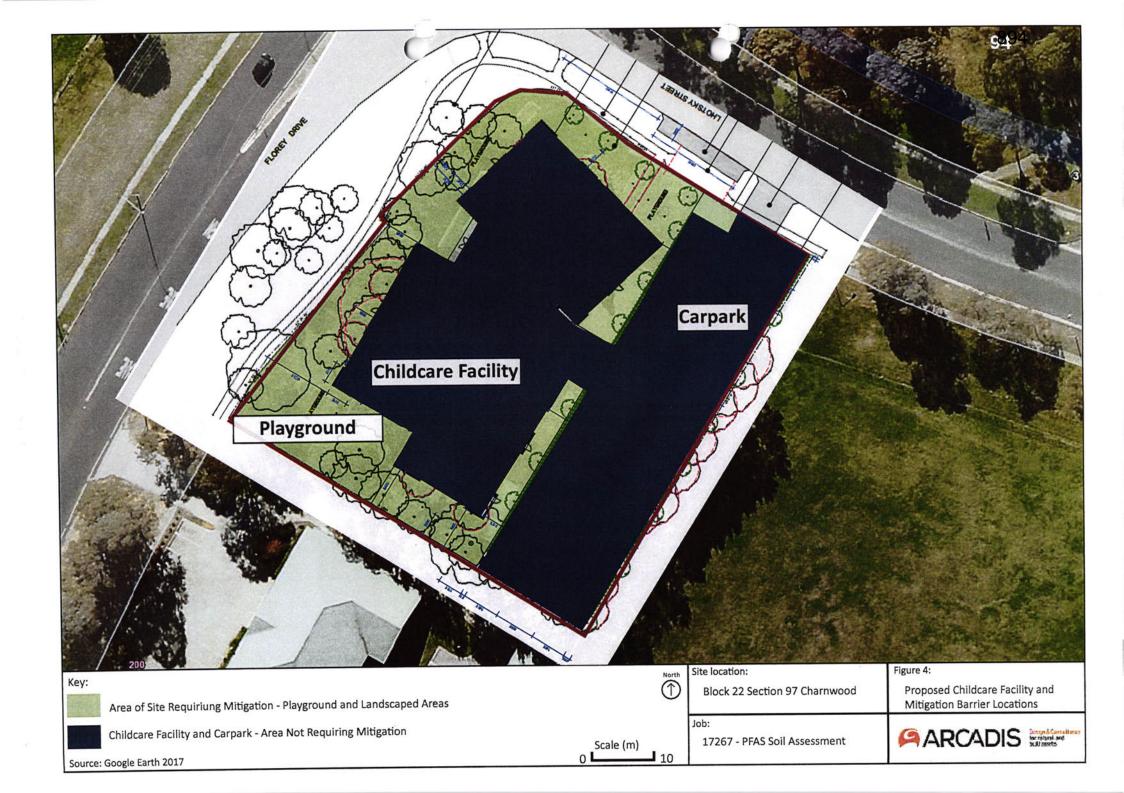
- Concrete pavement.
- Compacted decomposed Gravel (minimum 100mm) over geofabric.
- Synthetic turf.
- Rubber soft fall.
- Soft fall mulch (minimum 150mm) over geofabric.
- Tiles and pavers.
- · Wooden decking.
- Play sand/digging pit (minimum of 400mm in depth) Arcadis notes that a geofabric liner will be required below these areas to prevent direct contact to the underlying soils.

Any produce (e.g. fruit or vegetables) grown for consumption must be contained within elevated (400 mm) planter boxes with imported growing medium and must be placed on top of a base layer of geofabric material.

Several mature trees and general landscaping will be located within the playgrounds of the proposed redevelopment. To comply with tree protection guidelines as well as provide a

SOIL PFAS INVESTIGATION - 172678

satisfactory barrier, either compacted decomposed gravel, soft fall mulch, and/or wooden decking as detailed above will be used around the base of these trees.


Based on the results of this investigation, Arcadis makes the following recommendations:

- · Implement mitigation measures as described above.
- Where surface soil needs to be moved for construction purposes it should be placed under sealed hardstand areas such as the proposed carpark and or building, where possible.
- A confirmatory site inspection and review of the mitigation measure once installed should be completed. This will include a brief letter report to be provided to the ACT Health Directorate.
- No soil is to be removed from site without prior approval from the ACT EPA.
- An Environmental Management Plan (EMP) focusing on maintenance of the proposed mitigation measures and or intrusive works at the site should be prepared for the site.

Based on the implementation of the above mitigation measures, the potentially complete exposure pathway is revised to incomplete and therefore, the site would be suitable for the proposed childcare facility.

Notice of decision

Under Part 7 of the *Planning and Development Act 2007*Merit track

DA NO: 201731430		DATE LODGED: 1 May 2017		
201731430/A — S141 201731430/A — S141		18 June 2017		
		22 June 2017		
DATE OF DECISI	ON: 3 August 2017	8 83		
BLOCK: 22	SECTION: 97	SUBURB: CHARNWOOD		
STREET NO AND	NAME: 35 Lhotsky Stre	eet Charnwood		
APPLICANT: Kas	sparek Architects			
LESSEE: Childcare Investments Aus Pty Limited				

THE DECISION

This application was lodged in the merit track. Pursuant to section 113(2) of the *Planning and Development Act 2007* (Act), the application must be assessed according to the provisions relevant to merit track applications.

I, Jyoti Pradhan, delegate of the planning and land authority, pursuant to section 162 of the Act, hereby **approve subject to conditions** the proposal for:

- removal of existing nineteen (19) regulated trees (as indicated on the Tree Management Plan (Project No 1607, Drawing No. DA17 issue B, dated 1/06/2017) prepared by Kasparek Architects)
- relocation of existing driveway verge crossing and construction of a new driveway verge crossing;
- three on-street car parking spaces along Lhotsky Street;
- demolition of existing building and associated structures;
- construction of a new single storey child care centre for 120 child care spaces and comprising of:
 - nursery rooms with attached cot rooms, toddler rooms and pre-school rooms;
 - office/admin area;
 - kitchen; and
 - outdoor play areas;
- new surface carpark for minimum 44 car parking spaces;
- two illuminated Wall Signs and
- associated infrastructure, paving, landscaping and other site works,

in accordance with the plans, drawings and other documents and items submitted with the application for approval and endorsed as forming part of this approval.

This decision is subject to the conditions of approval at PART 1 being satisfied.

PART 2 sets out the Reasons for the Decision

PART 3 is Public Notification and Entity Advice.

PART 4 contains administrative information relating to the determination.

DELEGATE

Jyoti Pradhan Delegate of the planning and land authority Environment Planning and Sustainable Development Directorate 3 August 2017

CONTACT OFFICER

Jyoti Pradhan Phone: (02) 6207 1649

Email: Jyoti.Pradhan@act.gov.au

PART 1 CONDITIONS OF APPROVAL

This application is approved subject to the following conditions being satisfied. Some conditions of approval will require attention before the approved drawings will be released, others before work commences or before the completion of building work.

A. ADMINISTRATIVE / PROCESS CONDITIONS

A1. APPROVAL NOT TO TAKE EFFECT

This approval shall not take effect and works shall not commence on site until an endorsement from Health Protection Service (ACT Health Directorate) confirming the suitability of the proposed child care centre, is provided to the authority.

B. CONDITIONS FROM ENTITIES

B1. ACT HEALTH DIRECTORATE - HEALTH PROTECTION SERVICES (HPS)

The applicant/lessee **must** address the concerns raised by HPS in their letter dated 24 July 2017 (Refer to **Attachment A**).

Note: Stamped plans will not be released till HPS confirms their support for the proposed development.

B2. CONSERVATOR OF FLORA and FAUNA - TREE PROTECTION AUTHORITY

The development proposal shall comply with the following conditions to the satisfaction of the Conservator as noted in the advice dated 21 July 2017.

- (a) All proposed tree removal and tree protection works must be in accordance with the following plans as submitted:
 - Demolition Plan, (Project No 1607, Drawing No. DA16 issue B, dated 1/06/2017, prepared by Kasparek Architects);
 - Site Plan & External Lighting (Project No 1607, Drawing No. DA04 issue C, dated 22/06/2017, prepared by Kasparek Architects.)
 - Tree Management Plan (Project No 1607, Drawing No. DA17 issue C, dated 1/06/2017, prepared by Kasparek Architects.); and
 - Stormwater Management Plan (Job No. 17PEACH1, Drawing No. DA04 issue C, dated 6/06/2017, prepared by Pierre Dragh Consulting Engineers Pty Ltd).

B3. ENVIRONMENT PROTECTION AUTHORITY (EPA)

Applicant must comply with the conditions of approval imposed by the Environment Protection Authority, **prior to works commencing** on site.

Please refer to the conditions of approval at C1 below.

B4. CUSTODIAN OF THE LAND - TRANSPORT CANBERRA AND CITY SERVICES (TCCS)

Verge Crossing

- (a) The verge crossing must be constructed in accordance with TCCS Design Standards;
- (b) The levels on the verge must not be altered as a result of the new constructed verge crossing;

(c) Any infrastructure assets such as street lighting, mini-pillars, signage etc must be a minimum of 1.5m away from the closest edge of the driveway. In case of stormwater sumps this minimum distance must be 1.2m;

Pedestrian Network

(d) The pedestrian footpath must take precedence over the verge crossings so pedestrians have right of way over vehicles:

Verge

- (e) The verge must be protected at all times during construction;
- (f) There must be no encroachments on Unleased Territory Land;
- (g) All excavation within the tree protection zones of the verge trees must be carried out through hand digging, hydro excavation or any other recommended methods to ensure minimal damage to the tree roots;
- (h) Any new services located within tree protection zones (canopy plus 2m) must be installed by using trenchless methodology beneath tree root systems (i.e. underboring beneath 650mm);
- (i) A Landscape Management and Protection Plan (LMPP) must be submitted to Development Review & Coordination and approved prior to commencement of works;
- A dilapidation report for all government assets adjacent to the site must be submitted to Development Review & Coordination prior to commencement and on completion of works;

Waste

(k) Waste Truck Dimensions must not exceed 3.4m long and 2.4m in height;

On-Street Parking

- (I) On-street parking spaces must comply with TCCS requirements for on-street parking;
- (m) Any proposed parking signs and line-marking must be as per the Australian Standards, AS 1742.11; and
- (n) Compliance with the above must be demonstrated at the Design Acceptance Stage.

Note: See further advice from TCCS under Part 3: ENTITY ADVICE below.

B5. ACT EDUCATION DIRECTORATE – CHILDREN'S EDUCATION AND CARE ASSURANCE (CECA)

The applicant/lessee/service provider must contact CECA for further details and information regarding the proposed child care centre design and operations **prior to final design and works commencing on site**.

C. PRIOR TO CONSTRUCTION AND/OR DEMOLITION

C1. <u>ENVIRONMENT PROTECTION AUTHORITY (EPA)</u>

1. Contaminated Sites:

(a) a site specific unexpected finds protocol must be developed by a suitably qualified environmental consultant and implemented during development works at the site:

- (b) All soil subject to disposal from site must be assessed in accordance with Environment Protection Authority Information Sheet 4 Requirements for the reuse and disposal of contaminated soil in the ACT; and
- (c) No soil is to be disposed from site without EPA approval.

2. Hazardous Materials:

(a) A hazardous materials survey prepared by a suitably qualified consultant in accordance with section 8.1 of the Authority's Hazardous Materials Environment Protection Policy November 2010 must be submitted to and be endorsed by the Environmental Quality Unit prior to works commencing.

The survey must identify all potential hazardous materials associated with the alteration of the structure and any residues or wastes remaining within the structure. The survey must identify all hazardous material including fuel tanks, asbestos, lead, PCB containing materials, Synthetic Mineral Fibre (SMF), Ozone Depleting Substances etc..

(b) Appropriately ACT licensed contractors must be engaged for the removal, transport and disposal of all hazardous materials found on the site.

3. Environment Protection:

(a) Construction and development works should be in accordance with "Environment Protection Guidelines for Construction and Land Development, 2011".

Construction/development on a site of 0.3 hectares or greater is an activity listed in Schedule 1 of the *Environment Protection Act 1997* as a Class B activity. Therefore, the contractor/builder proposing to develop the site must hold an Environmental Authorisation or enter into an Environment Protection Agreement with the EPA in respect of that activity **prior to final design and works commencing on site**.

(b) A site specific unexpected finds protocol must be developed by a suitably qualified environmental consultant and implemented during development works at the site.

C2. SEDIMENT AND EROSION CONTROL

That prior to any work on the site commencing, the applicant/lessee must submit two copies of the Sediment and Erosion Control Plan to Environment Protection Authority for approval

C3. DESIGN REVIEW

A Letter of Design Review is required for all off-site works from the Senior Manager, Development Review and Coordination, TCCS, prior to the construction.

C4. TEMPORARY TRAFFIC MANAGEMENT (TTM)

A TTM plan approval is required from the Manager, Traffic Management & Safety, Roads ACT, TCCS. All times during construction the site and surrounds shall be managed in accordance with a Temporary Traffic Management Plan, prepared by a suitably qualified person and approved by the Manager, Traffic Management & Safety. This plan is to address, as a minimum, measures to be employed during construction to manage all traffic, including construction traffic, in and around the site, provision of safe pedestrian movement around the site, the provision of parking for construction workers, and associated traffic control devices.

C5. LANDSCAPE MANAGEMENT & PROTECTION PLAN (LMPP)

LMPP approval is required from the Senior Manager, Development Review and Coordination, TCCS. During construction, all existing vegetation (trees, shrubs and grass) located on the verge and unleased Territory land immediately adjacent to the development shall be managed, protected and maintained in accordance with the LMPP approved by the Senior Manager, Development Review and Coordination, TCCS. This plan is to be implemented before the commencement of works, including demolition on the site and is to be in accordance with TCCS Guidelines for the Protection of Public Landscape Assets Adjacent to Development Works-REF-04.

C6. NOTICE OF COMMENCEMENT OF CONSTRUCTION

Notice of Commencement of Construction shall be submitted to the Senior Manager, Development Review and Coordination, TCCS one week prior to the commencement of works. The Notice shall also include the confirmation of any protective measures installed in accordance with the approved LMPP and programmed implementation of the TTM.

C7. <u>USE OF VERGES OR OTHER UNLEASED TERRITORY LAND</u>

In accordance with the *Public Unleased Land Act 2013*, road verges and other unleased Territory land must not be used for carrying out of works, including storage of materials or waste, without prior approval of the Territory. Such approval can be obtained from Licensing and Compliance, City Services, Parks and Territory Services, TCCS.

C8. REPAIR OF DAMAGE TO PUBLIC ASSETS

The applicant/lessee is held responsible for all damages to ACT Government assets (including footpaths) caused by the development and they must properly repair any damages to those assets. Before work commences, the applicant/lessee must notify TCCS of any existing damage to public facilities.

C9. TREE PROTECTION

Tree protection fencing, if required, shall be erected prior to the commencement of any work on the site.

D. DURING CONSTRUCTION AND/OR DEMOLITION

D1. LANDSCAPE MANAGEMENT AND PROTECTION

During any work undertaken on the site, all existing vegetation (trees, shrubs and grass) located on the verge and unleased Territory land immediately adjacent to the development shall be managed, protected and maintained in accordance with the approved Landscape Management and Protection Plan (LMPP) approved by the Senior Manager, Development Review and Coordination, TCCS.

D2. TREE PROTECTION

The applicant/lessee shall protect and maintain all existing trees and shrubs located on the subject site, on adjoining blocks overhanging the subject site, on the verge and unleased Territory land immediately adjacent, except for those specifically identified for removal in the approved drawings and a Tree Management Plan.

D3. TRAFFIC MANAGEMENT

At all times, the site and surrounds shall be managed in accordance with the approved Temporary Traffic Management (TTM) Plan.

D4. SEDIMENT AND EROSION CONTROL

All unsurfaced entry and exit points must be consolidated with crushed aggregate or similar extending from the road kerb to the building line.

Temporary sediment controls – comprising, as a minimum, geotextile silt fencing along the lowest points of the site and hay bale filters as required – are to be installed and maintained at least daily to prevent sediment from reaching the stormwater mains system.

D5. WASTE MANAGEMENT

All building waste is to be stored on the site in suitable receptacles and collected regularly. The lessee is to take all reasonable steps to ensure that waste, particularly wind borne litter, does not affect adjoining or adjacent properties.

E. ADVISORY NOTES

This application is approved with the following advisory notes. It is recommended that careful consideration be given to advisory notes prior to commencing work.

E1. ENVIRONMENT PROTECTION

- (a) All rain water that enters the site and pools in excavations during a rain storm event would be considered as a sediment control pond, and must meet the following conditions.
 - 1. No discharge from dam. All stormwater must be pumped out and disposed in at an approved location.
 - No discharge from pond unless sediment level is less than 60mg/litre. If sediment level is greater, then prior to discharge, the dam must be dosed with either Alum or Gypsum and allowed to settle until the sediment is less than 60 mg/litre.

E2. EXTERNAL LIGHTING

All external lights must comply with Australian Standards AS4282 Control of the obtrusive effects of outdoor lighting.

E3. ACT HEALTH DIRECTORATE- HEALTH PROTECTION SERVICES (HPS)

Prior to work commencing on site the applicant/lessee must submit a 'Food Business Registration and Fit-Out Assessment' application (with suitably detailed plans) for approval by HPS.

E4. ACT EMERGENCY SERVICES AGENCY (ESA)

Prior to commencing work on site the applicant/lessee must consider and address the advice from ESA in their letter dated 18 May 2017 (Refer to *Attachment B*).

E5. ICON Water

The proposal must comply with the Statement of Conditional Acceptance dated 10 May 2017, by ICON Water (Refer to *Attachment C*).

E6. ACTEWAGL:

- (a) The proposal must comply with the Statement of Conditional Compliance dated 23 May 2017, by Actew – Electricity Networks Division (Refer to Attachment D).
- (b) The proposal must comply with the Statement of Conditional Compliance dated 16 May 2017, by Actew AGL - Gas Networks Division (Refer to Attachment E).

E7. ENTITY ADVICE

The applicant is advised to carefully consider all the relevant advice (in addition to the conditions imposed) from each of the entities stated in *PART 3 PUBLIC NOTIFICATION AND ENTITY ADVICE* of this Notice of Decision throughout the process of development (prior to, during & post construction) as applicable.

Refer to Appendix 1 for information about approvals that may be required for construction.

PART 2 REASONS FOR THE DECISION

The application satisfactorily meets the requirements for approval. The application was approved because, based on the documentation and in the form modified by the imposed conditions, it was considered to meet:

- · the relevant codes, being
 - the Charnwood Precinct Map and Code;
 - the Community Facility Zone Development Code;
 - the Community and Recreation Facilities Location Guidelines General Code; and
 - the Signs General Code.
- the advice of the Conservator of Flora and Fauna in relation to the proposal.

The key issues identified in the assessment are in relation to,

Suitability of Site for a Child Care Centre – HPS requirements:

HPS advised that the EPA endorsement of the site investigation report conducted by AECOME Australia Pty Ltd is supported. However, HPS requested further information from the applicant in relation to the results of the perfluorooctane sulphonate (PFOS) and perfluorooctanoic acid analysis of the soil.

EPA also confirmed that the above additional information, be requested from the applicant.

In response, the applicant advised that the information requested was not made available to them at the time of purchase of the site from the Land Development Agency (LDA). The applicant also confirmed that all works on site would be carried out in accordance with the EPA requirements and relevant Australian Standards.

Further to receiving this response from the applicant, HPS has advised that the results obtained through LDA has provided evidence that PFOS contamination levels on site is considered unacceptable due to its potential health impact on children. HPS has raised concerns in relation to the suitability of the site for the proposed child care centre.

HPS has advised the applicant to provide a complete and up-to-date assessment of the site, focusing on areas likely to be exposed (including playgrounds and landscaped areas). HPS requires that the applicant demonstrates suitable mitigation measures to eliminate the exposure of (PFOS) to vulnerable populations (refer to **Attachment A**).

Condition of approval has been included to provide HPS endorsement confirming the suitability of the proposed child care centre. Refer *PART 1 CONDITIONS OF APPROVAL* for more details.

2. Removal of Existing Regulated Trees and Tree Damaging activity:

The subject development includes removal of nineteen (19) regulated trees. The development also includes tree damaging activity under the canopy of existing regulated trees on site.

The Conservator of Flora and Fauna - Tree Protection Authority did not support the proposed removal of regulated trees. The advice stated that the trees proposed for removal were of low to medium quality. However, the trees did not meet the Tree Protection Criteria for removal pursuant to the Section 82 of the *Tree Protection Act 2005* and therefore need to be considered for removal on development grounds.

To consider the removal of trees on development grounds pursuant to section 119 (2) of the Act, the applicant was advised to provide additional information on any realistic alternatives to the development proposed or aspects of it.

Applicant provided drawings and further information, which was also referred back to the Tree Protection Authority for further review.

On 21 July 2017, the Conservator liaison advised that the proposed removal of the regulated trees identified for removal on the Tree Management Plan (Project No 1607. Drawing No. DA17 issue B, dated 1/06/2017, prepared by Kasparek Architects) was supported pursuant to conditions of approval. Refer PART 1 CONDITIONS OF APPROVAL for details.

3. Entity requirements:

- Environment Protection Authority:
- Transport Canberra and City Services (TCCS);
- ACT Education Directorate:
- ICON Water:
- Actew AGL Electricity Networks Division; and
- Actew AGL Gas Networks Division.

Conditions have been imposed to address the key issues and ensure that the proposal is consistent with the Territory Plan and the Planning and Development Act 2007.

EVIDENCE

Application No. 201731430

File No. 1-2017/07672

The Territory Plan Zone - CFZ Community Facility Zone

The Development Codes - Community Facility Zone Development Code

Community and Recreation Facilities Location Guidelines

General Code

Signs General Code

The Precinct Codes - Charnwood Precinct Map and Code

Current Crown Lease - Volume 2270 Folio 56

Representations - No representations received

Entity advice - ACT Health Directorate - Health Protection Services

Conservator of Flora and Fauna

Tree Protection Authority

Environment Protection Authority

Custodian of the Land - Transport Canberra and City Services

ACT Education Directorate

Emergency Services Agency

ICON Water

ActewAGL

- Electricity Networks Division
- Gas Networks Division

PART 3 PUBLIC NOTIFICATION AND ENTITY ADVICE

PUBLIC NOTIFICATION

Pursuant to Division 7.3.4 of the Act, the application was publicly notified from 8 May 2017 to 26 May 2017. No written representations were received during public notification.

ENTITY ADVICE

Pursuant to Division 7.3.3 of the Act, the application was referred to entities and advice was received. The referral entities' comments are as follows. A response to the advice is provided as appropriate.

ACT HEALTH DIRECTORATE - HEALTH PROTECTION SERVICES (HPS)

- On 5 June 2017 advice was received from HPS in relation to the proposal. The advice stated that,
 - (a) The applicant is required to submit a 'Food Business Registration and Fit-Out Assessment' application (with suitably detailed plans) for approval, prior to commencement of construction; and
 - (b) Further information is required in relation to the results of the perfluorooctane sulphonate (PFOS) and perfluorooctanoic acid analysis of the soil.
 - > In response to item (b), the applicant advised that the above results were not available to them but confirmed that all works will be in accordance with EPA requirements.
- On 26 July 2017 further advice was received from HPS in relation to the proposal.

The advice states that the applicant must provide a more complete and up-to-date site assessment and to demonstrate suitable mitigation measures to eliminate the exposure of PFOS to vulnerable populations.

Response:

Matters noted have been incorporated as conditions of approval and advice.

A copy of the HPS advice is included at **Attachment A**.

CONSERVATOR OF FLORA and FAUNA

On 18 May 2017 advice was received from the Conservator liaison in relation to the proposal. The advice states that,

Dasyurus Macalatus (Spotted tail quolls) are a largely solitary animal that have a large home range and are highly mobile. At some point in the past a quoll was seen in the vicinity and the works proposed would not impact on that species.

Response:

Matters noted have been incorporated as advice to the applicant.

CONSERVATOR OF FLORA and FAUNA - TREE PROTECTION AUTHORITY

 On 22 May 2017 advice was received from the Conservator liaison in relation to the proposed removal of regulated trees on the site.

The advice stated that the trees proposed for removal were of low to medium quality.

However, the trees did not meet the Tree Protection Criteria for removal pursuant to the Section 82 of the *Tree Protection Act 2005* and therefore need to be considered for removal on Development Grounds

- > The applicant provided drawings and further information, which was also referred back to the Tree Protection Authority for further review.
- On 21 July 2017 further advice was received from the Conservator liaison in relation to the proposal. The advice states that the proposal is supported provided all works are in accordance with the following plans as submitted for assessment:
 - Demolition Plan, (Project No 1607, Drawing No. DA16 issue B, dated 1/06/2017, prepared by Kasparek Architects);
 - Site Plan & External Lighting (Project No 1607, Drawing No. DA04 issue C, dated 22/06/2017, prepared by Kasparek Architects.)
 - Tree Management Plan (Project No 1607, Drawing No. DA17 issue C, dated 1/06/2017, prepared by Kasparek Architects.); and
 - Stormwater Management Plan (Job No. 17PEACH1, Drawing No. DA04 issue C, dated 6/06/2017, prepared by Pierre Dragh Consulting Engineers Pty Ltd).

Response:

Matters noted have been incorporated as conditions of approval.

ENVIRONMENT PROTECTION AUTHORITY (EPA)

- On 30 May 2017 advice was received from EPA in relation to the proposal. The advice states that the proposal is supported subject to conditions of approval.
- 2. On 3 July 2017 further advice was received from EPA in relation to the proposal. The advice states that the proposal is supported as per the conditions of approval provided previously.

Conditions:

Contaminated Sites:

- (a) a site specific unexpected finds protocol must be developed by a suitably qualified environmental consultant and implemented during development works at the site;
- (b) All soil subject to disposal from site must be assessed in accordance with Environment Protection Authority Information Sheet 4 - Requirements for the reuse and disposal of contaminated soil in the ACT; and
- (c) No soil is to be disposed from site without EPA approval.

Hazardous Materials:

- (d) A hazardous materials survey prepared by a suitably qualified consultant in accordance with section 8.1 of the Authority's Hazardous Materials Environment Protection Policy November 2010 must be submitted to and be endorsed by the Environmental Quality Unit prior to works commencing.
- (e) The survey must identify all potential hazardous materials associated with the alteration of the structure and any residues or wastes remaining within the structure. The survey must identify all hazardous material including fuel tanks, asbestos, lead, PCB containing materials, Synthetic Mineral Fibre (SMF), Ozone Depleting Substances etc.

(f) Appropriately ACT licensed contractors must be engaged for the removal, transport and disposal of all hazardous materials found on the site.

Environment Protection:

- (g) Construction and development works should be in accordance with "Environment Protection Guidelines for Construction and Land Development, 2011".
 - Construction/development on a site of 0.3 hectares or greater is an activity listed in Schedule 1 of the *Environment Protection Act 1997* as a Class B activity. Therefore, the contractor/builder proposing to develop the site must hold an Environmental Authorisation or enter into an Environment Protection Agreement with the EPA in respect of that activity **prior to works commencing**.
- (h) A site specific unexpected finds protocol must be developed by a suitably qualified environmental consultant and implemented during development works at the site.

Response:

Matters noted have been incorporated as conditions of approval and advice.

Note: Relevant EPA conditions and advice has been included under PART 1 CONDITIONS OF APPROVAL.

CUSTODIAN OF THE LAND - TRANSPORT CANBERRA AND CITY SERVICES (TCCS)

- On 23 May 2017 and 25 May 2017 advice was received from TCCS in relation to the proposal. The advice states that the proposal is supported subject to conditions of approval.
- On 24 July 2017 further advice was received from TCCS in relation to the proposal. The
 advice states that the proposal is supported (as per the conditions of approval provided
 previously).

Conditions:

Verge Crossing

- (a) The verge crossing must be constructed in accordance with TCCS Design Standards;
- (b) The levels on the verge must not be altered as a result of the new constructed verge crossing;
- (c) Any infrastructure assets such as street lighting, mini-pillars, signage etc must be a minimum of 1.5m away from the closest edge of the driveway. In case of stormwater sumps this minimum distance must be 1.2m;

Pedestrian Network

 (d) The pedestrian footpath must take precedence over the verge crossings so pedestrians have right of way over vehicles;

Verge

- (e) The verge must be protected at all times during construction;
- (f) There must be no encroachments on Unleased Territory Land;
- (g) All excavation within the tree protection zones of the verge trees must be carried out through hand digging, hydro excavation or any other recommended methods to ensure minimal damage to the tree roots;

- (h) Any new services located within tree protection zones (canopy plus 2m) must be installed by using trenchless methodology beneath tree root systems (i.e. under-boring beneath 650mm);
- (i) A Landscape Management and Protection Plan (LMPP) must be submitted to Development Review & Coordination and approved prior to commencement of works;
- A dilapidation report for all Govt. assets adjacent to the site must be submitted to Development Review & Coordination prior to commencement and on completion of works;

Waste

(k) Waste Truck Dimensions must not exceed 3.4m long and 2.4m in height;

On-Street Parking

- (I) On-street parking spaces must comply with TCCS requirements for on-street parking;
- (m) Any proposed parking signs and line-marking must be as per the Australian Standards, AS 1742.11; and
- (n) Compliance with the above must be demonstrated at the Design Acceptance Stage.

Standard Conditions:

(a) Certificate of Design Review and Operational Acceptance

In accordance with the *Public Unleased Land Act 2013* no work is to be undertaken on road verges and other unleased Territory Land without the approval of the Territory. Such approval must be obtained from the Senior Manager, Development Review and Coordination, TCCS by the ways of:

- 1. A Letter of Design Review prior to the commencement of any work; and
- 2. A certificate of Operational Acceptance on completion of all works to be handed over to TCCS.

A Letter of Design Review is required for all off-site works from the Senior Manager, Development Review and Coordination, TCCS, prior to the construction.

In order to obtain the Letter of Design Review, fully detailed drawings (civil, landscape) prepared by suitably qualified persons for all off-site works including roads, driveways, footpaths, street lighting, storm water, landscaping (and any other issues that may be found by audit of the plans) and a design report in accordance with Ref No 06:"Requirements for Design Review Submissions", must be certified by a Chartered Engineer/Landscape Architect and submitted to the Senior Manager, Development Review and Coordination, TCCS.

A Certificate of Operational Acceptance on completion of the works is required from the Senior Manager, Development Review and Coordination, TCCS, prior to the issue of a Certificate of Occupancy.

Similarly a Chartered Engineer/Landscape Architect should certify compliance with TCCS Ref No 08: "Requirements for Works as Executed Quality Records Requirements" when the request for Operational Acceptance is made to the Senior Manager, Development Review and Coordination, TCCS on completion of all off-site works.

A Waste Management Plan in accordance with the Development Control Code for Best Practice Waste Management in the ACT should also be included if not approved at the Development Application stage.

(b) Temporary Traffic Management (TTM)

A TTM plan approval is required from the Manager, Traffic Management & Safety, Roads ACT, TCCS. All times during construction the site and surrounds shall be managed in accordance with a Temporary Traffic Management Plan, prepared by a suitably qualified person and approved by the Manager, Traffic Management & Safety. This plan is to address, as a minimum, measures to be employed during construction to manage all traffic, including construction traffic, in and around the site, provision of safe pedestrian movement around the site, the provision of parking for construction workers, and associated traffic control devices.

(c) Landscape Management & Protection Plan (LMPP)

LMPP approval is required from the Senior Manager, Development Review and Coordination, TCCS. During construction, all existing vegetation (trees, shrubs and grass) located on the verge and unleased Territory land immediately adjacent to the development shall be managed, protected and maintained in accordance with the Landscape Management Protection Plan (LMPP) approved by the Senior Manager, Development Review and Coordination, TCCS. This plan is to be implemented before the commencement of works, including demolition on the site and is to be in accordance with TCCS Guidelines for the Protection of Public Landscape Assets Adjacent to Development Works-REF-04.

(d) Use of Verges or other Unleased Territory land

In accordance with the *Public Unleased Land Act 2013*, road verges and other unleased Territory land must not be used for carrying out of works, including storage of materials or waste, without prior approval of the Territory. Such approval can be obtained from Licensing and Compliance, City Services, Parks and Territory Services, TCCS.

(e) Repair of Damage to Public Assets

The applicant/lessee is held responsible for all damages to ACT Government assets (including footpaths) caused by the development and they must properly repair any damages to those assets. Before work commences, they should notify TCCS of any existing damage to public facilities.

(f) Notice of Commencement of Construction

Notice of Commencement for the Works in Unleased Territory Land shall be submitted to the Senior Manager, Development Review and Coordination, TCCS one week prior to the commencement of works. The Notice shall also include the confirmation of any protective measures installed in accordance with the approved LMPP and the programmed implementation of TTM.

Response:

Matters noted have been incorporated as conditions of approval.

Note: Relevant TCCS conditions and advice has been included under PART 1 CONDITIONS OF APPROVAL.

ACT EDUCATION DIRECTORATE - CHILDREN'S EDUCATION AND CARE ASSURANCE (CECA)

- On 3 May 2017 advice was received from Education Directorate in relation to the proposal requesting further information on feasibility, needs analysis and the selection of an approved provider to operate the proposed child care centre.
 - > The applicant provided additional information, which was also referred back to the CECA for further review.

- 2. On 26 July 2017 further advice was received from CECA supporting the proposal in principle with following condition of approval:
 - (a) The applicant/lessee/service provider must contact CECA for further details and information regarding the proposed child care centre design and operations **prior to final design and works commencing on site**.

Response:

Matters noted have been incorporated as conditions of approval.

EMERGENCY SERVICES AGENCY (ESA)

On 23 May 2017 advice was received from ESA in relation to the proposal. The advice states that the proposal is supported with advice included in the letter dated 18 May 2017.

Response:

Matters noted have been incorporated as advice to the applicant.

A copy of the letter is included at **Attachment B**.

ICON WATER

On 10 May 2017, a Statement of Conditional Acceptance was issued by ICON WATER in relation to the proposal.

Response:

Matters noted have been incorporated as advice to the applicant.

A copy of the Statement is included at Attachment C.

ACTEWAGL

Electricity Networks Division

On 23 May 2017, a Statement of Conditional Compliance was issued by ActewAGL – Electricity Networks Division in relation to the proposal.

Response:

Matters noted have been incorporated as advice to the applicant.

A copy of the Statement is included at **Attachment D**.

Gas Networks Division (Jemena)

On 16 May 20172017, a Statement of Conditional Compliance was issued by ActewAGL – Gas Networks Division (Jemena) in relation to the proposal.

Response:

Matters noted have been incorporated as advice to the applicant.

A copy of the Statement is included at **Attachment E**.

PART 4 ADMINISTRATIVE INFORMATION

DATE THAT THIS APPROVAL TAKES EFFECT

Unless a condition of approval provides for otherwise this approval is effective from the day after the date of this notice. The effective date for development applications approved subject conditions could also be adjusted if the approval is reconsidered by the planning and land authority or if an application is made to the ACT Civil and Administrative Tribunal.

Pursuant to section 184 of the Act, this approval will expire if:

- the development or any stage of the development is not started within two years after the day the approval takes effect;
- the development is not finished two years after the day the development begins; or
- the development approval relates to land comprised in a lease that requires the development to be completed on a stated date – the date stated in the lease for completion of the development, or the approval is revoked under section 189 of the Act.

Under section 184 of the Act, the applicant may apply to the planning and land authority to extend the prescribed period to finish the development, but such an application must be made within the original period specified for completion.

A development approval, to which section 184 of the Act applies, continues unless the approval ends under sections 184, 185, 186 or 187 of the Act.

INSPECTION OF THE APPLICATION AND DECISION

A copy of the application and the decision can be inspected between 8:30am and 4:30pm weekdays at the Environment, Planning and Sustainable Development Directorate (EPSDD) Dickson Customer Service Centre at16 Challis Street, Dickson, ACT.

RECONSIDERATION OF THE DECISION

If the applicant is not satisfied with the decision to approve the application subject to conditions, they are entitled to apply to the planning and land authority for reconsideration within 20 working days of being told of this decision or within any longer period allowed by the planning and land authority.

To submit an application for reconsideration, documents must be provided electrically by email to epdcustomerservices@act.gov.au or provided at the customer service centre on a CD/DVD. The delegate of the Authority reconsidering the decision must be different from, and senior to, the original decision maker. An application for reconsideration does not prevent an application for a review of the same decision being made to the ACT Civil and Administrative Tribunal. Application forms and further information about reconsideration are available from the planning and land authority's website and Customer Service Centres.

REVIEW BY THE ACT CIVIL AND ADMINISTRATIVE TRIBUNAL (ACAT)

Decisions that are reviewable by the ACAT are identified in Schedule 1 of the *Planning and Development Act 2007*, except for those precluded under Schedule 3 of the *Planning and Development Regulation 2008* – Matters exempt from third-party ACAT review.

APPENDIX 1

CONTACT DETAILS OF RELEVANT AGENCIES

Health Directorate - health protection	Website: www.health.act.gov.au Telephone: (02) 6205 1700
Environment, Planning and Sustainable Development Directorate (EPSDD)	
Planning and land authority	Website: www.planning.act.gov.au Telephone: (02) 6207 1923
 list of certifiers for building approval demolition information asbestos information 	
 Environment Protection Authority environment protection water resources asbestos information 	Website: www.environment.act.gov.au Telephone: (02) 6207 6251
Conservation, Planning and Research - threatened species/wildlife management	Website: www.environment.act.gov.au Telephone: (02) 6207 1911
Transport Canberra and City Services Directorate - tree damaging activity approval - use of verges or other unleased Territory land - works on unleased Territory land - design acceptance - damage to public assets	Website: www.tccs.act.gov.au Telephone: 132 281 Telephone for asset acceptance: (02) 6207 7480
Utilities - Telstra (networks) - TransACT (networks) - ActewAGL - Electricity reticulation	Telephone: (02) 8576 9799 Telephone: (02) 6229 8000 Telephone: 1100 Telephone: (02) 6293 5738

ADVICE TO APPLICANT

SUBMISSION OF REVISED DRAWINGS AND DOCUMENTATION

If a condition of approval requires the applicant to lodge revised drawings and/or documentation with the planning and land authority for approval under section 165 of the *Planning and Development Act 2007* the submission shall be made by:

 Completing an application for S165 Satisfying Conditions of Approval and submitting the documentation online using edevelopment. More information on edevelopment can be found at http://www.actpla.act.gov.au/tools resources/e-services/edevelopment

For further information regarding the lodgement of this information please contact Customer Service Centre by Phone: (02) 6207 1923, Email: epdcustomerservices@act.gov.au or on the planning and land authority website at www.planning.act.gov.au.

FURTHER APPROVALS FOR CONSTRUCTION

The Notice of Decision grants development approval, but does not cover building approval or approvals which may be required during construction, which commonly include the following.

BUILDING APPROVAL

Most building work requires building approval to ensure it complies with building laws such as the Building Code of Australia. If this applies to this proposal, the lessee should engage a private building certifier to assess and approve the building plans before construction begins. A list of licensed certifiers and information about building approval is available from the planning and land authority's website and Customer Service Centres.

PERMITTED VARIATIONS TO APPROVED DEVELOPMENT

Under section 35 of the *Planning and Development Regulation 2008* the development as built may vary from the approved development in accordance with section 35 and the permitted construction tolerances and other permitted variations identified in Schedule 1A of that regulation.

Note 1 The development may still need building approval, or further building approval, under the Building Act 2004

Note 2 The development must also comply with the lease for the land on which it is carried out.

"TREE DAMAGING ACTIVITY" APPROVAL

A Tree Management Plan under the *Tree Protection Act 2005* is required for approval where it is proposed to undertake groundwork within the tree protection zone of a protected tree or likely to cause damage to, or remove, any trees defined as protected trees by that Act. More information is available from the Transport Canberra and City Services (TCCS).

USE OF VERGES OR OTHER UNLEASED TERRITORY LAND

In accordance with the *Public Unleased Land Act of 2013*, road verges and other unleased Territory land must not be used for the carrying out of works, including the storage of materials or waste, without prior approval of the Territory. Approval can be obtained from the Transport Canberra and City Services (TCCS).

WORKS ON UNLEASED TERRITORY LAND - DESIGN AND OPERATIONAL ACCEPTANCE

In accordance with the *Public Unleased Land Act of 2013*, no work can be undertaken on unleased Territory land without the approval of the Territory. Such approval must be obtained from the Manager Asset Acceptance, Asset Services Group, TCCS by way of:

1. a certificate of design acceptance prior to the commencement of any work and

2. a certificate of operational acceptance on completion of all works to be handed over to TCCS.

Works on unleased Territory land may include the construction or upgrading of driveway verge crossings, public footpaths, roads, street lighting, stormwater works, waste collection amenities, street signs and line marking, road furniture and landscaping.

A certificate of compliance under s296 of the *Planning and Development Act 2007* may not be issued unless a certificate of design acceptance **AND** a certificate of operational acceptance has both been obtained from TCCS.

CONSTRUCTION REQUIREMENTS

The following information are some key requirements that apply to building work in the Territory. Other requirements may apply to this development.

DEMOLITION AND ASBESTOS MANAGEMENT

Demolition and asbestos management must be undertaken in accordance with the *Building Act 2004* (including the Building Code of Australia) and the *Dangerous Substances Act 2004*. Information about demolition and asbestos management is available from the planning and land authority's web site and Customer Service Centres.

ENVIRONMENT PROTECTION

All building work must be undertaken in accordance with the *Environment Protection Act 1997*, particularly but not exclusively in relation to noise and pollution control. More information is available from the Environment Protection Authority.

REPAIR OF DAMAGE TO PUBLIC ASSETS

The applicant/lessee is held responsible for all damage to ACT Government assets (including footpaths) caused by the development and they must properly repair any damage to those assets. Before work commences, they should notify the Transport Canberra and City Services (TCCS) of any existing damage to public facilities.

UTILITY ASSETS RETENTION

The lessee should obtain a plant location advice from ActewAGL to avoid conflict with existing plant or electrical easements. The lessee will be responsible for the costs associated with the relocation of assets, if necessary. The lessee is to ensure that the water service and water meter are retained in position and in good condition. ActewAGL water meters are accountable items and must not be removed from the site or otherwise disposed of.

REVIEW OF THE DECISION

The following notes are provided in accordance with regulation 7 of the ACT Civil and Administrative Tribunal Regulation 2009. Refer to the Review by the ACT Civil and Administrative Tribunal (ACAT) section of the Notice of Decision for information about its relevance to this development application.

CONTACT DETAILS

The review authority is the ACT Civil and Administrative Tribunal (ACAT).

Location	Contact details	
ACT Civil and Administrative Tribunal Level 4, 1 Moore Street CANBERRA CITY ACT 2601	Website: www.acat.act.gov.au Email: tribunal@act.gov.au Telephone: (02) 6207 1740 Facsimile: (02) 6205 4855 Post: GPO Box 370, CANBERRA, ACT; 2601	P. Sarah

POWERS OF THE ACAT

The ACAT is an independent body. It can review on their merits a large number of decisions made by ACT Government ministers, officials and statutory authorities. The ACAT can agree with, change or reject the original decision, substitute its own decision or send the matter back to the decision maker for reconsideration in accordance with ACAT recommendations.